Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(50): e2215333119, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36469765

RESUMO

Efforts to decrease the adverse effects of nuclear receptor (NR) drugs have yielded experimental agonists that produce better outcomes in mice. Some of these agonists have been shown to cause different, not just less intense, on-target transcriptomic effects; however, a structural explanation for such agonist-specific effects remains unknown. Here, we show that partial agonists of the NR peroxisome proliferator-associated receptor γ (PPARγ), which induce better outcomes in mice compared to clinically utilized type II diabetes PPARγ-binding drugs thiazolidinediones (TZDs), also favor a different group of coactivator peptides than the TZDs. We find that PPARγ full agonists can also be biased relative to each other in terms of coactivator peptide binding. We find differences in coactivator-PPARγ bonding between the coactivator subgroups which allow agonists to favor one group of coactivator peptides over another, including differential bonding to a C-terminal residue of helix 4. Analysis of all available NR-coactivator structures indicates that such differential helix 4 bonding persists across other NR-coactivator complexes, providing a general structural mechanism of biased agonism for many NRs. Further work will be necessary to determine if such bias translates into altered coactivator occupancy and physiology in cells.


Assuntos
Diabetes Mellitus Tipo 2 , Tiazolidinedionas , Camundongos , Animais , PPAR gama/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Tiazolidinedionas/farmacologia , Ligação Proteica , Peptídeos/farmacologia , Peptídeos/metabolismo , Ligantes
2.
Nat Commun ; 10(1): 5825, 2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31862968

RESUMO

The repressive states of nuclear receptors (i.e., apo or bound to antagonists or inverse agonists) are poorly defined, despite the fact that nuclear receptors are a major drug target. Most ligand bound structures of nuclear receptors, including peroxisome proliferator-activated receptor γ (PPARγ), are similar to the apo structure. Here we use NMR, accelerated molecular dynamics and hydrogen-deuterium exchange mass spectrometry to define the PPARγ structural ensemble. We find that the helix 3 charge clamp positioning varies widely in apo and is stabilized by efficacious ligand binding. We also reveal a previously undescribed mechanism for inverse agonism involving an omega loop to helix switch which induces disruption of a tripartite salt-bridge network. We demonstrate that ligand binding can induce multiple structurally distinct repressive states. One state recruits peptides from two different corepressors, while another recruits just one, providing structural evidence of ligand bias in a nuclear receptor.


Assuntos
Proteínas Correpressoras/metabolismo , PPAR gama/metabolismo , Peptídeos/metabolismo , Anilidas/farmacologia , Benzamidas/farmacologia , Sítios de Ligação/efeitos dos fármacos , Sítios de Ligação/genética , Espectrometria de Massa com Troca Hidrogênio-Deutério , Ligantes , Espectroscopia de Ressonância Magnética , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , PPAR gama/agonistas , PPAR gama/antagonistas & inibidores , PPAR gama/ultraestrutura , Conformação Proteica em alfa-Hélice/efeitos dos fármacos , Conformação Proteica em alfa-Hélice/genética , Piridinas/farmacologia , Rosiglitazona/farmacologia
3.
Nat Commun ; 9(1): 4687, 2018 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-30409975

RESUMO

Small chemical modifications can have significant effects on ligand efficacy and receptor activity, but the underlying structural mechanisms can be difficult to predict from static crystal structures alone. Here we show how a simple phenyl-to-pyridyl substitution between two common covalent orthosteric ligands targeting peroxisome proliferator-activated receptor (PPAR) gamma converts a transcriptionally neutral antagonist (GW9662) into a repressive inverse agonist (T0070907) relative to basal cellular activity. X-ray crystallography, molecular dynamics simulations, and mutagenesis coupled to activity assays reveal a water-mediated hydrogen bond network linking the T0070907 pyridyl group to Arg288 that is essential for corepressor-selective inverse agonism. NMR spectroscopy reveals that PPARγ exchanges between two long-lived conformations when bound to T0070907 but not GW9662, including a conformation that prepopulates a corepressor-bound state, priming PPARγ for high affinity corepressor binding. Our findings demonstrate that ligand engagement of Arg288 may provide routes for developing corepressor-selective repressive PPARγ ligands.


Assuntos
Proteínas Correpressoras/metabolismo , PPAR gama/agonistas , PPAR gama/química , Células 3T3-L1 , Anilidas/química , Anilidas/farmacologia , Animais , Benzamidas/química , Benzamidas/farmacologia , Agonismo Inverso de Drogas , Células HEK293 , Humanos , Ligação de Hidrogênio , Ligantes , Espectroscopia de Ressonância Magnética , Camundongos , Mutagênese , Conformação Proteica , Piridinas/química , Piridinas/farmacologia , Água/química
4.
Nat Commun ; 9(1): 1794, 2018 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-29728618

RESUMO

The nuclear receptor ligand-binding domain (LBD) is a highly dynamic entity. Crystal structures have defined multiple low-energy LBD structural conformations of the activation function-2 (AF-2) co-regulator-binding surface, yet it remains unclear how ligand binding influences the number and population of conformations within the AF-2 structural ensemble. Here, we present a nuclear receptor co-regulator-binding surface structural ensemble in solution, viewed through the lens of fluorine-19 (19F) nuclear magnetic resonance (NMR) and molecular simulations, and the response of this ensemble to ligands, co-regulator peptides and heterodimerization. We correlate the composition of this ensemble with function in peroxisome proliferator-activated receptor-γ (PPARγ) utilizing ligands of diverse efficacy in co-regulator recruitment. While the co-regulator surface of apo PPARγ and partial-agonist-bound PPARγ is characterized by multiple thermodynamically accessible conformations, the full and inverse-agonist-bound PPARγ co-regulator surface is restricted to a few conformations which favor coactivator or corepressor binding, respectively.


Assuntos
Simulação de Dinâmica Molecular , PPAR gama/química , Peptídeos/química , Conformação Proteica , Sequência de Aminoácidos , Sítios de Ligação , Humanos , Ligantes , Espectroscopia de Ressonância Magnética , PPAR gama/agonistas , PPAR gama/metabolismo , Peptídeos/metabolismo , Ligação Proteica , Multimerização Proteica , Termodinâmica
5.
Arch Biochem Biophys ; 570: 47-57, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25712221

RESUMO

A cytokine-inducible extrahepatic human indoleamine 2,3-dioxygenase (hIDO1) catalyzes the first step of the kynurenine pathway. Immunosuppressive activity of hIDO1 in tumor cells weakens host T-cell immunity, contributing to the progression of cancer. Here we report on enzyme kinetics and catalytic mechanism of hIDO1, studied at varied levels of dioxygen (O2) and L-tryptophan (L-Trp). Using a cytochrome b5-based activating system, we measured the initial rates of O2 decay with a Clark-type oxygen electrode at physiologically-relevant levels of both substrates. Kinetics was also studied in the presence of two substrate analogs: 1-methyl-L-tryptophan and norharmane. Quantitative analysis supports a steady-state rather than a rapid equilibrium kinetic mechanism, where the rates of individual pathways, leading to a ternary complex, are significantly different, and the overall rate of catalysis depends on contributions of both routes. One path, where O2 binds to ferrous hIDO1 first, is faster than the second route, which starts with the binding of L-Trp. However, L-Trp complexation with free ferrous hIDO1 is more rapid than that of O2. As the level of L-Trp increases, the slower route becomes a significant contributor to the overall rate, resulting in observed substrate inhibition.


Assuntos
Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Oxigênio/química , Sítios de Ligação , Carbolinas , Catálise , Escherichia coli/enzimologia , Harmina/análogos & derivados , Harmina/química , Humanos , Imunossupressores/química , Cinurenina/química , Ligação Proteica , Especificidade por Substrato , Triptofano/análogos & derivados , Triptofano/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA