Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(9): 4268-4280, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38393751

RESUMO

Sub-Saharan Africa is a hotspot for biomass burning (BB)-derived carbonaceous aerosols, including light-absorbing organic (brown) carbon (BrC). However, the chemically complex nature of BrC in BB aerosols from this region is not fully understood. We generated smoke in a chamber through smoldering combustion of common sub-Saharan African biomass fuels (hardwoods, cow dung, savanna grass, and leaves). We quantified aethalometer-based, real-time light-absorption properties of BrC-containing organic-rich BB aerosols, accounting for variations in wavelength, fuel type, relative humidity, and photochemical aging conditions. In filter samples collected from the chamber and Botswana in the winter, we identified 182 BrC species, classified into lignin pyrolysis products, nitroaromatics, coumarins, stilbenes, and flavonoids. Using an extensive set of standards, we determined species-specific mass and emission factors. Our analysis revealed a linear relationship between the combined BrC species contribution to chamber-measured BB aerosol mass (0.4-14%) and the mass-absorption cross-section at 370 nm (0.2-2.2 m2 g-1). Hierarchical clustering resolved key molecular-level components from the BrC matrix, with photochemically aged emissions from leaf and cow-dung burning showing BrC fingerprints similar to those found in Botswana aerosols. These quantitative findings could potentially help refine climate model predictions, aid in source apportionment, and inform effective air quality management policies for human health and the global climate.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Humanos , Idoso , Carbono , Biomassa , Monitoramento Ambiental , Poluição do Ar/análise , Aerossóis/análise , Poluentes Atmosféricos/análise , Material Particulado/análise
2.
Environ Sci Technol ; 56(23): 16611-16620, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36378716

RESUMO

Acid-driven multiphase chemistry of isoprene epoxydiols (IEPOX) with inorganic sulfate aerosols contributes substantially to secondary organic aerosol (SOA) formation, which constitutes a large mass fraction of atmospheric fine particulate matter (PM2.5). However, the atmospheric chemical sinks of freshly generated IEPOX-SOA particles remain unclear. We examined the role of heterogeneous oxidation of freshly generated IEPOX-SOA particles by gas-phase hydroxyl radical (•OH) under dark conditions as one potential atmospheric sink. After 4 h of gas-phase •OH exposure (∼3 × 108 molecules cm-3), chemical changes in smog chamber-generated IEPOX-SOA particles were assessed by hydrophilic interaction liquid chromatography coupled with electrospray ionization high-resolution quadrupole time-of-flight mass spectrometry (HILIC/ESI-HR-QTOFMS). A comparison of the molecular-level compositional changes in IEPOX-SOA particles during aging with or without •OH revealed that decomposition of oligomers by heterogeneous •OH oxidation acts as a sink for •OH and maintains a reservoir of low-volatility compounds, including monomeric sulfate esters and oligomer fragments. We propose tentative structures and formation mechanisms for previously uncharacterized SOA constituents in PM2.5. Our results suggest that this •OH-driven renewal of low-volatility products may extend the atmospheric lifetimes of particle-phase IEPOX-SOA by slowing the production of low-molecular weight, high-volatility organic fragments and likely contributes to the large quantities of 2-methyltetrols and methyltetrol sulfates reported in PM2.5.


Assuntos
Poluentes Atmosféricos , Sulfatos , Sulfatos/química , Atmosfera/química , Hemiterpenos , Butadienos , Aerossóis/química , Material Particulado/análise , Poeira/análise , Oxirredução , Estresse Oxidativo , Poluentes Atmosféricos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA