Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Pharmaceuticals (Basel) ; 16(2)2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37259360

RESUMO

Triazole-based acetamides serve as important scaffolds for various pharmacologically active drugs. In the present work, structural hybrids of 1,2,4-triazole and acetamides were furnished by chemically modifying 2-(4-isobutylphenyl) propanoic acid (1). Target compounds 7a-f were produced in considerable yields (70-76%) by coupling the triazole of compound 1 with different electrophiles under different reaction conditions. These triazole-coupled acetamide derivatives were verified by physiochemical and spectroscopic (HRMS, FTIR, 13CNMR, and 1HNMR,) methods. The anti-liver carcinoma effects of all of the derivatives against a HepG2 cell line were investigated. Compound 7f, with two methyl moieties at the ortho-position, exhibited the highest anti-proliferative activity among all of the compounds with an IC50 value of 16.782 µg/mL. 7f, the most effective anti-cancer molecule, also had a very low toxicity of 1.190.02%. Molecular docking demonstrates that all of the compounds, especially 7f, have exhibited excellent binding affinities of -176.749 kcal/mol and -170.066 kcal/mol to c-kit tyrosine kinase and protein kinase B, respectively. Compound 7f is recognized as the most suitable drug pharmacophore for the treatment of hepatocellular carcinoma.

2.
Int J Mol Sci ; 24(4)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36834859

RESUMO

A test set of N,N,N',N'-tetrasubstituted p-phenylenediamines are experimentally explored using ESR (electron spin resonance) spectroscopy and analysed from a computational standpoint thereafter. This computational study aims to further aid structural characterisation by comparing experimental ESR hyperfine coupling constants (hfccs) with computed values calculated using ESR-optimised "J-style" basis sets (6-31G(d,p)-J, 6-31G(d,p)-J, 6-311++G(d,p)-J, pcJ-1, pcJ-2 and cc-pVTZ-J) and hybrid-DFT functionals (B3LYP, PBE0, TPSSh, ωB97XD) as well as MP2. PBE0/6-31g(d,p)-J with a polarised continuum solvation model (PCM) correlated best with the experiment, giving an R2 value of 0.8926. A total of 98% of couplings were deemed satisfactory, with five couplings observed as outlier results, thus degrading correlation values significantly. A higher-level electronic structure method, namely MP2, was sought to improve outlier couplings, but only a minority of couples showed improvement, whilst the remaining majority of couplings were negatively degraded.


Assuntos
Modelos Teóricos , Fenilenodiaminas , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Cátions
3.
Artigo em Inglês | MEDLINE | ID: mdl-36749788

RESUMO

Biological drugs are increasingly important for patients and industry due to their application in the treatment of common and potentially life-threatening diseases such as diabetes, cancer, and obesity. While most marketed biopharmaceuticals today are injectables, the potential of mucoadhesive delivery systems based on dendron-coated mesoporous silica nanoparticles for oral delivery of biological drugs is explored in this project. We hypothesize that specifically designed dendrons can be employed as mucoadhesive excipients and used to decorate the surface of nanoparticles with properties to embed a drug molecule. We initially tested a novel synthesis method for the preparation of dendrons, which was successfully validated by the chemical characterization of the compounds. The interaction between dendrons and mucin was studied through isothermal titration calorimetry and quartz crystal microbalance with dissipation monitoring and proved to be spontaneous and thermodynamically favorable. Dendrons were conjugated onto 244.4 nm mesoporous silica nanoparticles and characterized for chemical composition, size, and surface charge, which all showed a successful conjugation. Finally, dynamic light scattering was used to study the interaction between nanoparticles and porcine gastric mucin, whereas the interaction between nanoparticles and porcine intestinal mucus was characterized by rheological measurements. This study shows a deeper biophysical understanding of the interaction between nanoparticles and mucin or native porcine intestinal mucus, further leveraging the current understanding of how dendrons can be used as excipients to interact with mucin. This will provide knowledge for the potential development of a new generation of mucoadhesive nanoformulations for the oral delivery of biopharmaceuticals.

4.
J Phys Chem B ; 126(46): 9686-9694, 2022 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-36354364

RESUMO

Polyamidoamine (PAMAM) dendrimers are exploited as drug carriers in various biomedical research fields, especially cancer therapy. The present study analyzes the interactions occurring between differently functionalized PAMAM dendrimers, namely, amine, acetamide, and 3-methoxy-carbonyl-5-pyrrolidonyl ("pyrrolidone"), and model membranes, namely, sodium dodecyl sulfate (SDS), sodium hexadecylsulfate (SHS) micelles, and egg-lecithin liposomes. For this purpose, the dendrimers were spin-labeled with the 3-carbamoyl-PROXYL radical. 1H-NMR spectra allowed the verification not only that labeling was successful but also that acetamide and (even more so) pyrrolidone functions shield the proton signals from the influence of the neighboring nitroxide groups. The computer-aided analysis of the electron paramagnetic resonance (EPR) spectra showed that the dendrimers with the acetamide function largely (60%) entered the SDS-micelles interface, while the amino-dendrimer electrostatically interacted with both the SDS and SHS surface forming dendrimer aggregates in solution. The pyrrolidone-dendrimers showed an intermediate behavior between those with the amino and acetamide functions. The acetamide- and pyrrolidone-dendrimers weakly interacted with the lecithin liposome surface, with a synergy between hydrophilic and hydrophobic interactions. Conversely, liposomes/amino-dendrimers interactions were quite strong and led to dendrimer aggregation at the liposome surface in solution. This information showed that acetamide- and pyrrolidone-dendrimers may be used as good alternatives to amino-dendrimers for drug delivery.


Assuntos
Lipossomos , Micelas , Lipossomos/química , Marcadores de Spin , Lecitinas , Poliaminas/química , Membrana Celular , Acetamidas
5.
PLoS One ; 16(10): e0258207, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34597343

RESUMO

The rapid evolution of antibiotic resistance in Clostridioides difficile and the consequent effects on prevention and treatment of C. difficile infections (CDIs) are matters of concern for public health. Thioridazine, a compound belonging to the phenothiazine group, has previous shown antimicrobial activity against C. difficile. The purpose of this present study was to investigate the potential of a novel phenothiazine derivative, JBC 1847, as an oral antimicrobial for treatment of intestinal pathogens and CDIs. The minimal inhibition concentration and the minimum bactericidal concentration of JBC 1847 against C. difficile ATCC 43255 were determined 4 µg/mL and high tolerance after oral administration in mice was observed (up to 100 mg/kg bodyweight). Pharmacokinetic modeling was conducted in silico using GastroPlusTM, predicting low (< 10%) systemic uptake after oral exposure and corresponding low Cmax in plasma. Impact on the intestinal bacterial composition after four days of treatment was determined by 16s rRNA MiSeq sequencing and revealed only minor impact on the microbiota in non-clinically affected mice, and there was no difference between colony-forming unit (CFU)/gram fecal material between JBC 1847 and placebo treated mice. The cytotoxicity of the compound was assessed in Caco-2 cell-line assays, in which indication of toxicity was not observed in concentrations up to seven times the minimal bactericidal concentration. In conclusion, the novel phenothiazine derivative demonstrated high antimicrobial activity against C. difficile, had low predicted gastrointestinal absorption, low intestinal (in vitro) cytotoxicity, and only induced minor changes of the healthy microbiota, altogether supporting that JBC 1847 could represent a novel antimicrobial candidate. The clinical importance hereof calls for future experimental studies in CDI models.


Assuntos
Clostridioides difficile/efeitos dos fármacos , Infecções por Clostridium/tratamento farmacológico , Microbioma Gastrointestinal/efeitos dos fármacos , Fenotiazinas/farmacologia , Administração Oral , Animais , Células CACO-2 , Clostridioides difficile/patogenicidade , Infecções por Clostridium/genética , Infecções por Clostridium/microbiologia , Infecções por Clostridium/patologia , Fezes/microbiologia , Microbioma Gastrointestinal/genética , Humanos , Camundongos , RNA Ribossômico 16S/genética
6.
Phys Chem Chem Phys ; 23(36): 20340-20351, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34486635

RESUMO

The formal potentials for the reversible one-electron oxidation of N,N,N',N' tetrasubstituted p-phenylenediamines in acetonitrile have been applied as a test set for benchmarking computational methods for a series of compounds with only small structural differences. The aim of the study is to propose a simple method for calculating the standard oxidation potentials, and therefore, the protocol is progressively developed by adding more terms in the energy expression. In addition, the effect of including implicit solvation models (IEFPCM, CPCM, and SMD), larger basis sets, and correlation methods are investigated. The oxidation potentials calculated using the G3MP2B3 approach with IEFPCM resulted in the best fit (R2 = 0.9624), but the slope of the correlation line, 0.74, is far from the optimal value, 1.00. B3LYP/6-311++G(d,p) and TPSSh/6-311++G(2d,p) yielded only slightly less consistent data (R2 = 0.9388 and R2 = 0.9425), but with much better slopes, 1.00 and 0.94, respectively. We conclude that it is important to investigate the basis set size and treatment of electron correlation when calculating oxidation potentials for N,N,N',N' tetrasubstituted p-phenylenediamines.

7.
JAC Antimicrob Resist ; 3(3): dlab108, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34337409

RESUMO

BACKGROUND: Bacterial biofilm formation is a complicating factor in the antimicrobial treatment of bacterial infections. OBJECTIVES: In this study, we assessed the impact of a novel hydrogel with the active antimicrobial compound JBC 1847 on eradication of preformed biofilms of Staphylococcus epidermidis, Cutibacterium acnes and MRSA in vitro, and evaluated the in vivo efficacy of MRSA wound treatment. METHODS: Biofilms were exposed to JBC 1847 for 24 h and subsequently the treatments were neutralized and surviving biofilm-associated bacteria recovered and enumerated. The efficacy of the hydrogel on post-treatment load of MRSA was determined in a murine model of MRSA wound infection, and skin samples of the infected mice were examined histologically to evaluate the degree of healing. RESULTS: A concentration-dependent eradication of biofilm-embedded bacteria by JBC 1847 was observed for all three pathogens, and the hydrogel caused a greater than four log reduction of cfu in all cases. In the mouse model, treatment with the hydrogel significantly reduced the cfu/mL of MRSA compared with treatment of MRSA-infected wounds with pure hydrogel. Histopathological analysis of the wounds showed that the JBC 1847 treatment group had a lower grade of inflammation, a higher mean score of re-epithelization and higher mean scores of parameters assessing the maturity of the newly formed epidermis, compared with both the fusidic acid 2% and vehicle treatment groups. CONCLUSIONS: The novel hydrogel shows promising results as a candidate for future wound treatment, likely to be highly effective even in the case of biofilm-complicating infected wounds.

8.
Nat Commun ; 12(1): 4858, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34381048

RESUMO

Complement is an enzymatic humoral pattern-recognition defence system of the body. Non-specific deposition of blood biomolecules on nanomedicines triggers complement activation through the alternative pathway, but complement-triggering mechanisms of nanomaterials with dimensions comparable to or smaller than many globular blood proteins are unknown. Here we study this using a library of <6 nm poly(amido amine) dendrimers bearing different end-terminal functional groups. Dendrimers are not sensed by C1q and mannan-binding lectin, and hence do not trigger complement activation through these pattern-recognition molecules. While, pyrrolidone- and carboxylic acid-terminated dendrimers fully evade complement response, and independent of factor H modulation, binding of amine-terminated dendrimers to a subset of natural IgM glycoforms triggers complement activation through lectin pathway-IgM axis. These findings contribute to mechanistic understanding of complement surveillance of dendrimeric materials, and provide opportunities for dendrimer-driven engineering of complement-safe nanomedicines and medical devices.


Assuntos
Ativação do Complemento , Proteínas do Sistema Complemento/metabolismo , Dendrímeros/metabolismo , Imunoglobulina M/metabolismo , Ativação do Complemento/efeitos dos fármacos , Complemento C1q/metabolismo , Dendrímeros/química , Dendrímeros/farmacologia , Portadores de Fármacos/química , Portadores de Fármacos/metabolismo , Portadores de Fármacos/farmacologia , Humanos , Lectina de Ligação a Manose/metabolismo , Serina Proteases Associadas a Proteína de Ligação a Manose , Poliaminas/química , Poliaminas/metabolismo , Poliaminas/farmacologia
9.
Front Microbiol ; 12: 786173, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35069485

RESUMO

Multidrug-resistant pathogens constitute a serious global issue and, therefore, novel antimicrobials with new modes of action are urgently needed. Here, we investigated the effect of a phenothiazine derivative (JBC 1847) with high antimicrobial activity on Staphylococcus aureus, using a wide range of in vitro assays, flow cytometry, and RNA transcriptomics. The flow cytometry results showed that JBC 1847 rapidly caused depolarization of the cell membrane, while the macromolecule synthesis inhibition assay showed that the synthesis rates of DNA, RNA, cell wall, and proteins, respectively, were strongly decreased. Transcriptome analysis of S. aureus exposed to sub-inhibitory concentrations of JBC 1847 identified a total of 78 downregulated genes, whereas not a single gene was found to be significantly upregulated. Most importantly, there was downregulation of genes involved in adenosintrifosfat (ATP)-dependent pathways, including histidine biosynthesis, which is likely to correlate with the observed lower level of intracellular ATP in JBC 1847-treated cells. Furthermore, we showed that JBC 1847 is bactericidal against both exponentially growing cells and cells in a stationary growth phase. In conclusion, our results showed that the antimicrobial properties of JBC 1847 were primarily caused by depolarization of the cell membrane resulting in dissipation of the proton motive force (PMF), whereby many essential bacterial processes are affected. JBC 1847 resulted in lowered intracellular levels of ATP followed by decreased macromolecule synthesis rate and downregulation of genes essential for the amino acid metabolism in S. aureus. Bacterial compensatory mechanisms for this proposed multi-target activity of JBC 1847 seem to be limited based on the observed very low frequency of resistance toward the compound.

10.
Front Microbiol ; 11: 560798, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33101232

RESUMO

The emergence of multidrug-resistant bacteria constitutes a significant public health issue worldwide. Consequently, there is an urgent clinical need for novel treatment solutions. It has been shown in vitro that phenothiazines can act as adjuvants to antibiotics whereby the minimum inhibitory concentration (MIC) of the antibiotic is decreased. However, phenothiazines do not perform well in vivo, most likely because they can permeate the blood-brain (BBB) barrier and cause severe side-effects to the central nervous system. Therefore, the aim of this study was to synthesize a promazine derivate that would not cross the BBB but retain its properties as antimicrobial helper compound. Surprisingly, in vitro studies showed that the novel compound, JBC 1847 exhibited highly increased antimicrobial activity against eight Gram-positive pathogens (MIC, 0.5-2 mg/L), whereas a disc diffusion assay indicated that the properties as an adjuvant were lost. JBC 1847 showed significant (P < 0.0001) activity against a Staphylococcus aureus strain compared with the vehicle, in an in vivo wound infection model. However, both in vitro and in silico analyses showed that JBC 1847 possesses strong affinity for human plasma proteins and an Ames test showed that generally, it is a non-mutagenic compound. Finally, in silico predictions suggested that the compound was not prone to pass the BBB and had a suitable permeability to the skin. In conclusion, JBC 1847 is therefore suggested to hold potential as a novel topical agent for the clinical treatment of S. aureus skin and soft tissue infections, but pharmacokinetics and pharmacodynamics need to be further investigated.

11.
Antibiotics (Basel) ; 9(6)2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32549350

RESUMO

Thioridazine hydrochloride (HCl) has been suggested as a promising antimicrobial helper compound for the treatment of infections with antimicrobial-resistant bacteria. Unfortunately, the therapeutic concentration of thioridazine HCl is generally higher than what can be tolerated clinically, in part due to its toxic side effects on the central nervous system. Therefore, we aimed to synthesize a less toxic thioridazine derivative that would still retain its properties as a helper compound. This resulted in a compound designated 1-methyl-2-(2-(2-(methylthio)-10H-phenothiazin-10-yl)ethyl)-1-pentylpiperidin-1-ium bromide (abbreviated T5), which exhibited low blood-brain barrier permeability. The lowest minimal inhibitory concentration (MIC) against Staphylococcus aureus exposed to the novel compound was reduced 32-fold compared to thioridazine HCl (from 32 µg/mL to 1 µg/mL). The MIC values for T5 against five Gram-positive pathogens ranged from 1 µg/mL to 8 µg/mL. In contrast to thioridazine HCl, T5 does not act synergistically with oxacillin. In silico predictive structure analysis of T5 suggests that an acceptably low toxicity and lack of induced cytotoxicity was demonstrated by a lactate dehydrogenase assay. Conclusively, T5 is suggested as a novel antimicrobial agent against Gram-positive bacteria. However, future pharmacokinetic and pharmacodynamic studies are needed to clarify the clinical potential of this novel discovery.

12.
Colloids Surf B Biointerfaces ; 181: 959-962, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31382346

RESUMO

The therapeutic effect of indomethacin, a water-insoluble non-steroidal anti-inflammatory drug, requires its efficient transport through cellular membranes and accumulation inside the target cells. The application of dendritic polymers has been proposed for the improvement of the drug's solubility and intracellular delivery. In this study we evaluated the anti-inflammatory potential of novel, highly-biocompatible 4-carbomethoxypyrrolidone-coated PAMAM dendrimers loaded with indomethacin. Our results indicate that complexation with dendrimers do not hamper the inhibitory action of indomethacin towards cyclooxygenases. Drug-dendrimer formulations exhibited improved anti-inflammatory activity in in vitro-cultured cellular models, showing enhanced inhibition of prostaglandin secretion and significantly decreased expression of NF-κB marker genes compared to free drug.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Dendrímeros/química , Indometacina/farmacologia , Pirrolidinonas/química , Anti-Inflamatórios não Esteroides/química , Humanos , Indometacina/química , NF-kappa B/metabolismo , Prostaglandinas/metabolismo , Células U937
13.
Mol Pharm ; 15(8): 3573-3582, 2018 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-30011214

RESUMO

COX-2 inhibitors such as nonsteroidal anti-inflammatory drugs (NSAIDs) are the most common treatment for chronic inflammatory diseases like arthritis and atherosclerosis. However, they are associated with severe side effects such as cardiovascular events or stomach bleeding, due to coinhibition of other enzymes (COX1) and off-target accumulation. PAMAM dendrimers can solubilize lipophilic drugs and increase their circulation time; furthermore, PAMAM dendrimers seem to have some accumulation in inflammatory sides. Three different generations of 4-carbomethoxypyrrolidone (Pyr) surface-modified PAMAM dendrimers were complexed with the NSAID drug indomethacin, and their in-solution thermodynamic profiles were studied by means of NMR experiments. The binding stoichiometry was found dependent on solvent system and dendrimer generation. Larger dendrimers (G3-Pyr) were found to bind indomethacin through entropy driven binding mode, while G1-Pyr and G2-Pyr expressed an enthalpy driven complex formation, which means that the binding constants have a generational temperature dependency. G1/2-Pyr showed reduced binding with increasing temperature, which could be important for drug release at inflammatory sites, which have, in general, elevated temperatures. In vitro studies elucidated that the indomethacin drug remained its activity when delivered as a dendrimer-indomethacin complex. A slight reduction in toxicity profile was noticed for G2/G3-Pyr-indomethacin dendrimers. Both free indomethacin and dendrimer-indomethacin complex inhibited a variety of pro-inflammatory cytokines in LPS treated cells. However, only the indo-dendrimer complexes showed a significant reduction of IL-1ß in LPS-treated THP-1 cells, which was not present in the control with free indomethacin.


Assuntos
Inibidores de Ciclo-Oxigenase 2/farmacologia , Dendrímeros/química , Portadores de Fármacos/química , Indometacina/farmacologia , Inflamação/tratamento farmacológico , Linhagem Celular Tumoral , Inibidores de Ciclo-Oxigenase 2/química , Citocinas/metabolismo , Composição de Medicamentos/métodos , Liberação Controlada de Fármacos , Humanos , Indometacina/química , Inflamação/imunologia , Lipopolissacarídeos/imunologia , Espectroscopia de Ressonância Magnética , Pirrolidinonas/química , Solubilidade , Temperatura , Testes de Toxicidade/métodos
14.
Colloids Surf B Biointerfaces ; 159: 211-216, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28797971

RESUMO

Traditional amine terminated PAMAM dendrimers may be readily surface engineered by a facile one-pot conversion with dialkyl itaconate esters into 4-carbomethoxypyrrolidone terminated PAMAM (G=0-4) dendrimers. These terminated dendrimers are uniquely characterized by exhibiting blue fluorescence emissions (λexc=370nm, λmaxem=440nm). Thanks to this property they can be directly analyzed by confocal microscopy and flow cytometry without additional fluorescence labeling, treatment of dendrimers with chemicals or adjusting pH. These intrinsically fluorescent dendrimers were shown to be very effective for assessing important biological cell features such as cellular entry, intracellular trafficking/localization and efflux properties. For example, all tested cell lines (e.g., B14, BRL-3A, and mHippoE-18) rapidly accumulated PAMAM-pyrrolidone dendrimer. The BRL-3A cell line exhibited both cytoplasmic and nuclear localization patterns; whereas in B14 cells and mHippoE-18 cells, the blue dendrimer fluorescence could only be detected in intracellular endosome-like structures. The dendrimer was observed to be released from all three cell lines during the first 24h; however, efflux was substantially slower from the B-14 cell line. The highest efflux rate was observed for the mHippoE-18 cells. This first successful biological experiment opens a broad spectrum of using these dendrimers as new bioimaging agents for extensive biological cell characterizations.


Assuntos
Dendrímeros/química , Linhagem Celular , Citometria de Fluxo , Humanos , Concentração de Íons de Hidrogênio , Microscopia Confocal
15.
J Control Release ; 246: 88-97, 2017 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-28040639

RESUMO

We report on a simple robust procedure for synthesis of generation-4 poly-(amidoamine) (PAMAM) dendrimers with a precisely core positioned single sulforhodamine B molecule. The labelled dendrimers exhibited high fluorescent quantum yields where the absorbance and fluorescence spectrum of the fluorophore was not affected by pH and temperature. Since the stoichiometry of the fluorophore to the dendrimer is 1:1, we were able to directly compare uptake kinetics, the mode of uptake, trafficking and safety of dendrimers of different end-terminal functionality (carboxylated vs. pyrrolidonated) by two phenotypically different human endothelial cell types (the human brain capillary endothelial cell line hCMEC/D3 and human umbilical vein endothelial cells), and without interference of the fluorophore in uptake processes. The results demonstrate comparable uptake kinetics and a predominantly clathrin-mediated endocytotic mechanism, irrespective of dendrimer end-terminal functionality, where the majority of dendrimers are directed to the endo-lysosomal compartments in both cell types. A minor fraction of dendrimers, however, localize to endoplasmic reticulum and the Golgi apparatus, presumably through the recycling endosomes. In contrast to amino-terminated PAMAM dendrimers, we confirm safety of carboxylic acid- and pyrrolidone-terminated PAMAM dendrimers through determination of cell membrane integrity and comprehensive respiratory profiling (measurements of mitochondrial oxidative phosphorylation and determination of its coupling efficiency). Our dendrimer core-labelling approach could provide a new conceptual basis for improved understanding of dendrimer performance within biological settings.


Assuntos
Dendrímeros/análise , Células Endoteliais/citologia , Corantes Fluorescentes/análise , Rodaminas/análise , Linhagem Celular , Dendrímeros/química , Dendrímeros/metabolismo , Células Endoteliais/metabolismo , Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Metaboloma , Imagem Óptica , Rodaminas/química , Rodaminas/metabolismo
16.
J Phys Chem B ; 120(36): 9576-80, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27552183

RESUMO

A series of different generation PAMAM dendrimers with sulforhodamine B covalently attached to the dendrimer core was investigated regarding their optical properties. Steady-state and time-resolved spectroscopic techniques were used to determine the size influence of the dendrimers on the photophysical behavior of the luminescent core. New blue emissive species were formed as the generation increased from zero to four. The growth of the dendritic branches resulted in a rise of fluorescence quantum yield and fluorescence lifetime values. Rotational correlation times were used to determine the hydrodynamic diameters of the fluorescent-core dendrimers, and good accordance was found with the values previously reported for unlabeled PAMAM dendrimers, which makes them potentially suitable diagnostic tools for biomedical tracing.

17.
PLoS One ; 10(10): e0138706, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26448138

RESUMO

Recognition and binding of anions in water is difficult due to the ability of water molecules to form strong hydrogen bonds and to solvate the anions. The complexation of two different carboxylates with 1-(4-carbomethoxypyrrolidone)-terminated PAMAM dendrimers was studied in aqueous solution using NMR and ITC binding models. Sodium 2-naphthoate and sodium 3-hydroxy-2-naphthoate were chosen as carboxylate model compounds, since they carry structural similarities to many non-steroidal anti-inflammatory drugs and they possess only a limited number of functional groups, making them ideal to study the carboxylate-dendrimer interaction selectively. The binding stoichiometry for 3-hydroxy-2-naphthoate was found to be two strongly bound guest molecules per dendrimer and an additional 40 molecules with weak binding affinity. The NOESY NMR showed a clear binding correlation of sodium 3-hydroxy-2-naphthoate with the lyophilic dendrimer core, possibly with the two high affinity guest molecules. In comparison, sodium 2-naphthoate showed a weaker binding strength and had a stoichiometry of two guests per dendrimer with no additional weakly bound guests. This stronger dendrimer interaction with sodium 3-hydroxy-2-naphthoate is possibly a result of the additional interactions of the dendrimer with the extra hydroxyl group and an internal stabilization of the negative charge due to the hydroxyl group. These findings illustrate the potential of the G4 1-(4-carbomethoxy) pyrrolidone dendrimer to complex carboxylate guests in water and act as a possible carrier of such molecules.


Assuntos
Ácidos Carboxílicos/química , Dendrímeros/química , Portadores de Fármacos/química , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Naftalenos , Soluções
18.
Int Microbiol ; 18(1): 1-12, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26415662

RESUMO

Historically, multiplicity of actions in synthetic compounds is a rule rather than exception. The science of non-antibiotics evolved in this background. From the antimalarial and antitrypanosomial dye methylene blue, chemically similar compounds, the phenothiazines, were developed. The phenothiazines were first recognised for their antipsychotic properties, but soon after their antimicrobial functions came to be known and then such compounds were designated as non-antibiotics. The emergence of highly drug-resistant bacteria had initiated an urgent need to search for novel affordable compounds. Several phenothiazines awakened the interest among scientists to determine their antimycobacterial activity. Chlorpromazine, trifluoperazine, methdilazine and thioridazine were found to have distinct antitubercular action. Thioridazine took the lead as researchers repeatedly claimed its potentiality. Although thioridazine is known for its central nervous system and cardiotoxic side-effects, extensive and repeated in vitro and in vivo studies by several research groups revealed that a very small dose of thioridazine is required to kill tubercle bacilli inside macrophages in the lungs, where the bacteria try to remain and multiply silently. Such a small dose is devoid of its adverse side-effects. Recent studies have shown that the (-) thioridazine is a more active antimicrobial agent and devoid of the toxic side effects normally encountered. This review describes the possibilities of bringing down thioridazine and its (-) form to be combined with other antitubercular drugs to treat infections by drug-resistant strains of Mycobacterium tuberculosis and try to eradicate this deadly disease.


Assuntos
Antituberculosos/uso terapêutico , Mycobacterium tuberculosis/efeitos dos fármacos , Fenotiazinas/uso terapêutico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Antipsicóticos/uso terapêutico , Clorpromazina/uso terapêutico , Humanos , Mycobacterium tuberculosis/fisiologia , Tioridazina/uso terapêutico , Trifluoperazina/uso terapêutico
19.
Chem Commun (Camb) ; 51(49): 9957-60, 2015 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-25997569

RESUMO

Copper and copper-cobalt subnanoparticles have been synthesized using 4-carbomethoxypyrrolidone terminated PAMAM-dendrimers as templates. The metal particles were applied in catalytic reduction reactions. While Cu subnanoparticles were only capable of reducing conjugated double bonds, enhancing the Cu particles with Co led to a surprising increase in catalytic activity, reducing also isolated carbon double and triple bonds.

20.
Bioconjug Chem ; 26(7): 1198-211, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-25654320

RESUMO

Dendrimers are three-dimensional macromolecular structures originating from a central core molecule and surrounded by successive addition of branching layers (generation). These structures exhibit a high degree of molecular uniformity, narrow molecular weight distribution, tunable size and shape characteristics, as well as multivalency. Collectively, these physicochemical characteristics together with advancements in design of biodegradable backbones have conferred many applications to dendrimers in formulation science and nanopharmaceutical developments. These have included the use of dendrimers as pro-drugs and vehicles for solubilization, encapsulation, complexation, delivery, and site-specific targeting of small-molecule drugs, biopharmaceuticals, and contrast agents. We briefly review these advances, paying particular attention to attributes that make dendrimers versatile for drug formulation as well as challenging issues surrounding the future development of dendrimer-based medicines.


Assuntos
Dendrímeros/química , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Transfecção , Animais , Anti-Infecciosos/química , Anti-Infecciosos/farmacocinética , Anti-Infecciosos/farmacologia , Anti-Infecciosos/toxicidade , Bactérias/efeitos dos fármacos , Infecções Bacterianas/tratamento farmacológico , Dendrímeros/farmacocinética , Dendrímeros/farmacologia , Dendrímeros/toxicidade , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/toxicidade , Sistemas de Liberação de Medicamentos/métodos , Humanos , Engenharia Tecidual/métodos , Transfecção/métodos , Viroses/tratamento farmacológico , Vírus/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA