Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mech Dev ; 138 Pt 3: 291-9, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26369283

RESUMO

Efficient replication of the genome and the establishment of endogenous chromatin states are processes that are essential to eukaryotic life. It is well documented that Mcm10 is intimately linked to both of these important biological processes; therefore, it is not surprising that Mcm10 is commonly misregulated in many human cancers. Most of the research regarding the biological roles of Mcm10 has been performed in single-cell or cell-free in-vitro systems. Though these systems are informative, they are unable to provide information on the cell-specific function of Mcm10 in the context of the tissue and organ systems that comprise multicellular eukaryotes. We therefore sought to identify the potential biological functions of Mcm10 in the context of a complex multicellular organism by continuing our analysis in Drosophila using three novel hypomorphic alleles. Observation of embryonic nuclear morphology and quantification of embryo hatch rates reveal that maternal loading of Mcm10 is required for embryonic nuclear stability, and suggest a role for Mcm10 post zygotic transition. Contrary to the essential nature of Mcm10 depicted in the literature, it does not appear to be required for adult viability in Drosophila if embryonic requirements are met. Although not required for adult somatic viability, analysis of fecundity and ovarian morphology in mutant females suggest that Mcm10 plays a role in maintenance of the female germline. Taken together, our results demonstrate critical roles for Mcm10 during early embryogenesis, and mark the first data linking Mcm10 to female specific reproduction in multicellular eukaryotes.


Assuntos
Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Proteínas de Manutenção de Minicromossomo/genética , Proteínas de Manutenção de Minicromossomo/fisiologia , Oogênese/genética , Oogênese/fisiologia , Animais , Animais Geneticamente Modificados , Desenvolvimento Embrionário/genética , Desenvolvimento Embrionário/fisiologia , Feminino , Fertilidade/genética , Fertilidade/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Genes de Insetos , Instabilidade Genômica , Humanos , Masculino , Mutação
2.
Chromosoma ; 121(6): 585-96, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22993141

RESUMO

The condensation state of chromosomes is a critical parameter in multiple processes within the cell. Failures in the maintenance of appropriate condensation states may lead to genomic instability, mis-expression of genes, and a number of disease states. During cell proliferation, replication of DNA represents an ongoing challenge for chromosome packaging as DNA must be unpackaged for replication and then faithfully repackaged. An integral member of the DNA replication machinery is the GINS complex which has been shown to stabilize the CMG complex which is required for processivity of the Mcm2-7 helicase complex during S phase. Through examination of the phenotypes associated with a null mutation in Psf2, a member of the evolutionarily conserved GINS complex, we find that Drosophila Psf2 likely has a role in establishing chromosome condensation and that the defects associated with this mis-condensation impact M phase progression, genomic stability, and transcriptional regulation.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Cromossomos de Insetos/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Animais , Animais Geneticamente Modificados , Divisão Celular/genética , Proteínas Cromossômicas não Histona/genética , Dano ao DNA/genética , Proteínas de Drosophila/genética , Endorreduplicação , Feminino , Dosagem de Genes , Mutação , Ovário/fisiologia , Cromossomos Politênicos , Fase S/genética
3.
BMC Mol Biol ; 12: 13, 2011 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-21470422

RESUMO

BACKGROUND: Proper coordination of the functions at the DNA replication fork is vital to the normal functioning of a cell. Specifically the precise coordination of helicase and polymerase activity is crucial for efficient passage though S phase. The Ctf4 protein has been shown to be a central member of the replication fork and links the replicative MCM helicase and DNA polymerase α primase. In addition, it has been implicated as a member of a complex that promotes replication fork stability, the Fork Protection Complex (FPC), and as being important for sister chromatid cohesion. As such, understanding the role of Ctf4 within the context of a multicellular organism will be integral to our understanding of its potential role in developmental and disease processes. RESULTS: We find that Drosophila Ctf4 is a conserved protein that interacts with members of the GINS complex, Mcm2, and Polymerase α primase. Using in vivo RNAi knockdown of CTF4 in Drosophila we show that Ctf4 is required for viability, S phase progression, sister chromatid cohesion, endoreplication, and coping with replication stress. CONCLUSIONS: Ctf4 remains a central player in DNA replication. Our findings are consistent with what has been previously reported for CTF4 function in yeast, Xenopus extracts, and human tissue culture. We show that Ctf4 function is conserved and that Drosophila can be effectively used as a model to further probe the precise function of Ctf4 as a member of the replication fork and possible roles in development.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Replicação do DNA , Proteínas de Drosophila/metabolismo , Animais , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/metabolismo , DNA Polimerase I/metabolismo , Drosophila , Proteínas de Drosophila/antagonistas & inibidores , Proteínas de Drosophila/genética , Desenvolvimento Embrionário , Técnicas de Silenciamento de Genes , Hidroxiureia/farmacologia , Proteínas de Manutenção de Minicromossomo , Interferência de RNA , Fase S
4.
Biochem Biophys Res Commun ; 400(1): 145-50, 2010 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-20709026

RESUMO

Essential for the normal functioning of a cell is the maintenance of genomic integrity. Failure in this process is often catastrophic for the organism, leading to cell death or mis-proliferation. Central to genomic integrity is the faithful replication of DNA during S phase. The GINS complex has recently come to light as a critical player in DNA replication through stabilization of MCM2-7 and Cdc45 as a member of the CMG complex which is likely responsible for the processivity of helicase activity during S phase. The GINS complex is made up of 4 members in a 1:1:1:1 ratio: Psf1, Psf2, Psf3, And Sld5. Here we present the first analysis of the function of the Sld5 subunit in a multicellular organism. We show that Drosophila Sld5 interacts with Psf1, Psf2, and Mcm10 and that mutations in Sld5 lead to M and S phase delays with chromosomes exhibiting hallmarks of genomic instability.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Ciclo Celular/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiologia , Instabilidade Genômica/genética , Alelos , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Proteínas de Manutenção de Minicromossomo , Mitose , Mutação , Técnicas do Sistema de Duplo-Híbrido
5.
Genetics ; 185(4): 1151-65, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20498296

RESUMO

DNA replication and the correct packaging of DNA into different states of chromatin are both essential processes in all eukaryotic cells. High-fidelity replication of DNA is essential for the transmission of genetic material to cells. Likewise the maintenance of the epigenetic chromatin states is essential to the faithful reproduction of the transcriptional state of the cell. It is becoming more apparent that these two processes are linked through interactions between DNA replication proteins and chromatin-associated proteins. In addition, more proteins are being discovered that have dual roles in both DNA replication and the maintenance of epigenetic states. We present an analysis of two Drosophila mutants in the conserved DNA replication protein Mcm10. A hypomorphic mutant demonstrates that Mcm10 has a role in heterochromatic silencing and chromosome condensation, while the analysis of a novel C-terminal truncation allele of Mcm10 suggests that an interaction with Mcm2 is not required for chromosome condensation and heterochromatic silencing but is important for DNA replication.


Assuntos
Proteínas de Ciclo Celular/genética , Replicação do DNA/genética , Proteínas de Drosophila/genética , Mutação , Alelos , Animais , Animais Geneticamente Modificados , Sítios de Ligação/genética , Western Blotting , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/fisiologia , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Cromossomos de Insetos/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Heterocromatina/genética , Masculino , Microscopia Confocal , Proteínas de Manutenção de Minicromossomo , Cromossomos Politênicos/genética , Ligação Proteica , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Técnicas do Sistema de Duplo-Híbrido
6.
J Biotechnol ; 123(4): 504-15, 2006 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-16497403

RESUMO

Gentle alternatives to existing sterilization methods are called for by rapid advances in biomedical technologies. Supercritical fluid technologies have found applications in a wide range of areas and have been explored for use in the inactivation of medical contaminants. In particular, supercritical CO(2) is appealing for sterilization due to the ease at which the supercritical state is attained, the non-reactive nature, and the ability to readily penetrate substrates. However, rapid inactivation of bacterial endospores has proven a barrier to the use of this technology for effective terminal sterilization. We report the development of a supercritical CO(2) based sterilization process capable of achieving rapid inactivation of bacterial endospores while in terminal packaging. Moreover, this process is gentle; as the morphology, ultrastructure, and protein profiles of inactivated microbes are maintained. These properties of the sterilization process suit it for possible use on a wide range of biomedical products including: materials derived from animal tissues, protein based therapies, and other sensitive medical products requiring gentle terminal sterilization.


Assuntos
Dióxido de Carbono , Bactérias Formadoras de Endosporo/fisiologia , Esterilização/métodos , Bactérias Formadoras de Endosporo/efeitos dos fármacos , Viabilidade Microbiana , Microscopia Eletrônica de Transmissão , Salmonella/efeitos dos fármacos , Salmonella/fisiologia , Esporos Bacterianos/efeitos dos fármacos , Esterilização/instrumentação
7.
Mol Biol Cell ; 14(6): 2206-15, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12808023

RESUMO

Mcm10 is required for the initiation of DNA replication in Saccharomyces cerevisiae. We have cloned MCM10 from Drosophila melanogaster and show that it complements a ScMCM10 null mutant. Moreover, Mcm10 interacts with key members of the prereplication complex: Mcm2, Dup (Cdt1), and Orc2. Interactions were also detected between Mcm10 and itself, Cdc45, and Hp1. RNAi depletion of Orc2 and Mcm10 in KC cells results in loss of DNA content. Furthermore, depletion of Mcm10, Cdc45, Mcm2, Mcm5, and Orc2, respectively, results in aberrant chromosome condensation. The condensation defects observed resemble previously published reports for Orc2, Orc5, and Mcm4 mutants. Our results strengthen and extend the argument that the processes of chromatin condensation and DNA replication are linked.


Assuntos
Proteínas de Ciclo Celular/genética , Cromossomos/metabolismo , Proteínas de Drosophila , Drosophila/genética , Proteínas de Saccharomyces cerevisiae , Animais , Ciclo Celular/fisiologia , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona , Replicação do DNA/fisiologia , Proteínas de Ligação a DNA/metabolismo , Drosophila/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas de Manutenção de Minicromossomo , Complexo de Reconhecimento de Origem , Saccharomyces cerevisiae/genética
8.
J Biol Chem ; 278(8): 6093-100, 2003 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-12473677

RESUMO

Mcm1 is an essential protein required for the efficient replication of minichromosomes and the transcriptional regulation of early cell cycle genes in Saccharomyces cerevisiae. In this study, we report that Mcm1 is an abundant protein that associates globally with chromatin in a punctate pattern. We show that Mcm1 is localized at replication origins and plays an important role in the initiation of DNA synthesis at a chromosomal replication origin in vivo. Using purified Mcm1 protein, we show that Mcm1 binds cooperatively to multiple sites at autonomously replicating sequences. These results suggest that, in addition to its role as a transcription factor for the expression of replication genes, Mcm1 may influence the local structure of replication origins by direct binding.


Assuntos
Replicação do DNA/genética , Proteína 1 de Manutenção de Minicromossomo/genética , Origem de Replicação/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Sequência de Bases , Sítios de Ligação , Clonagem Molecular , DNA Fúngico/química , DNA Fúngico/genética , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Proteína 1 de Manutenção de Minicromossomo/química , Proteína 1 de Manutenção de Minicromossomo/metabolismo , Dados de Sequência Molecular , Plasmídeos , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA