Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Lancet Neurol ; 23(5): 487-499, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38631765

RESUMO

BACKGROUND: Pick's disease is a rare and predominantly sporadic form of frontotemporal dementia that is classified as a primary tauopathy. Pick's disease is pathologically defined by the presence in the frontal and temporal lobes of Pick bodies, composed of hyperphosphorylated, three-repeat tau protein, encoded by the MAPT gene. MAPT has two distinct haplotypes, H1 and H2; the MAPT H1 haplotype is the major genetic risk factor for four-repeat tauopathies (eg, progressive supranuclear palsy and corticobasal degeneration), and the MAPT H2 haplotype is protective for these disorders. The primary aim of this study was to evaluate the association of MAPT H2 with Pick's disease risk, age at onset, and disease duration. METHODS: In this genetic association study, we used data from the Pick's disease International Consortium, which we established to enable collection of data from individuals with pathologically confirmed Pick's disease worldwide. For this analysis, we collected brain samples from individuals with pathologically confirmed Pick's disease from 35 sites (brainbanks and hospitals) in North America, Europe, and Australia between Jan 1, 2020, and Jan 31, 2023. Neurologically healthy controls were recruited from the Mayo Clinic (FL, USA, or MN, USA between March 1, 1998, and Sept 1, 2019). For the primary analysis, individuals were directly genotyped for the MAPT H1-H2 haplotype-defining variant rs8070723. In a secondary analysis, we genotyped and constructed the six-variant-defined (rs1467967-rs242557-rs3785883-rs2471738-rs8070723-rs7521) MAPT H1 subhaplotypes. Associations of MAPT variants and MAPT haplotypes with Pick's disease risk, age at onset, and disease duration were examined using logistic and linear regression models; odds ratios (ORs) and ß coefficients were estimated and correspond to each additional minor allele or each additional copy of the given haplotype. FINDINGS: We obtained brain samples from 338 people with pathologically confirmed Pick's disease (205 [61%] male and 133 [39%] female; 338 [100%] White) and 1312 neurologically healthy controls (611 [47%] male and 701 [53%] female; 1312 [100%] White). The MAPT H2 haplotype was associated with increased risk of Pick's disease compared with the H1 haplotype (OR 1·35 [95% CI 1·12 to 1·64], p=0·0021). MAPT H2 was not associated with age at onset (ß -0·54 [95% CI -1·94 to 0·87], p=0·45) or disease duration (ß 0·05 [-0·06 to 0·16], p=0·35). Although not significant after correcting for multiple testing, associations were observed at p less than 0·05: with risk of Pick's disease for the H1f subhaplotype (OR 0·11 [0·01 to 0·99], p=0·049); with age at onset for H1b (ß 2·66 [0·63 to 4·70], p=0·011), H1i (ß -3·66 [-6·83 to -0·48], p=0·025), and H1u (ß -5·25 [-10·42 to -0·07], p=0·048); and with disease duration for H1x (ß -0·57 [-1·07 to -0·07], p=0·026). INTERPRETATION: The Pick's disease International Consortium provides an opportunity to do large studies to enhance our understanding of the pathobiology of Pick's disease. This study shows that, in contrast to the decreased risk of four-repeat tauopathies, the MAPT H2 haplotype is associated with an increased risk of Pick's disease in people of European ancestry. This finding could inform development of isoform-related therapeutics for tauopathies. FUNDING: Wellcome Trust, Rotha Abraham Trust, Brain Research UK, the Dolby Fund, Dementia Research Institute (Medical Research Council), US National Institutes of Health, and the Mayo Clinic Foundation.


Assuntos
Doença de Pick , Tauopatias , Feminino , Humanos , Masculino , Estudos de Associação Genética , Haplótipos , Doença de Pick/genética , Proteínas tau/genética
2.
medRxiv ; 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37163045

RESUMO

Background: Pick's disease (PiD) is a rare and predominantly sporadic form of frontotemporal dementia that is classified as a primary tauopathy. PiD is pathologically defined by argyrophilic inclusion Pick bodies and ballooned neurons in the frontal and temporal brain lobes. PiD is characterised by the presence of Pick bodies which are formed from aggregated, hyperphosphorylated, 3-repeat tau proteins, encoded by the MAPT gene. The MAPT H2 haplotype has consistently been associated with a decreased disease risk of the 4-repeat tauopathies of progressive supranuclear palsy and corticobasal degeneration, however its role in susceptibility to PiD is unclear. The primary aim of this study was to evaluate the association between MAPT H2 and risk of PiD. Methods: We established the Pick's disease International Consortium (PIC) and collected 338 (60.7% male) pathologically confirmed PiD brains from 39 sites worldwide. 1,312 neurologically healthy clinical controls were recruited from Mayo Clinic Jacksonville, FL (N=881) or Rochester, MN (N=431). For the primary analysis, subjects were directly genotyped for MAPT H1-H2 haplotype-defining variant rs8070723. In secondary analysis, we genotyped and constructed the six-variant MAPT H1 subhaplotypes (rs1467967, rs242557, rs3785883, rs2471738, rs8070723, and rs7521). Findings: Our primary analysis found that the MAPT H2 haplotype was associated with increased risk of PiD (OR: 1.35, 95% CI: 1.12-1.64 P=0.002). In secondary analysis involving H1 subhaplotypes, a protective association with PiD was observed for the H1f haplotype (0.0% vs. 1.2%, P=0.049), with a similar trend noted for H1b (OR: 0.76, 95% CI: 0.58-1.00, P=0.051). The 4-repeat tauopathy risk haplotype MAPT H1c was not associated with PiD susceptibility (OR: 0.93, 95% CI: 0.70-1.25, P=0.65). Interpretation: The PIC represents the first opportunity to perform relatively large-scale studies to enhance our understanding of the pathobiology of PiD. This study demonstrates that in contrast to its protective role in 4R tauopathies, the MAPT H2 haplotype is associated with an increased risk of PiD. This finding is critical in directing isoform-related therapeutics for tauopathies.

3.
Mol Neurodegener ; 15(1): 7, 2020 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-32000838

RESUMO

BACKGROUND: A repeat expansion in the C9orf72-SMCR8 complex subunit (C9orf72) is the most common genetic cause of two debilitating neurodegenerative diseases: amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Currently, much remains unknown about which variables may modify these diseases. We sought to investigate associations between C9orf72 promoter methylation, RNA expression levels, and repeat length, their potential effects on disease features, as well as changes over time and within families. METHODS: All samples were obtained through the ALS Center at Mayo Clinic Florida. Our primary cohort included 75 unrelated patients with an expanded C9orf72 repeat, 33 patients who did not possess this expansion, and 20 control subjects without neurodegenerative diseases. Additionally, 67 members from 17 independent C9orf72 families were selected of whom 33 harbored this expansion. Longitudinally collected samples were available for 35 C9orf72 expansion carriers. To increase our understanding of C9orf72-related diseases, we performed quantitative methylation-sensitive restriction enzyme-based assays, digital molecular barcoding, quantitative real-time PCR, and Southern blotting. RESULTS: In our primary cohort, higher methylation levels were observed in patients with a C9orf72 repeat expansion than in patients without this expansion (p = 1.7e-13) or in control subjects (p = 3.3e-07). Moreover, we discovered that an increase in methylation levels was associated with a decrease in total C9orf72 transcript levels (p = 5.5e-05). These findings aligned with our observation that C9orf72 expansion carriers had lower expression levels of total C9orf72 transcripts than patients lacking this expansion (p = 3.7e-07) or control subjects (p = 9.1e-05). We also detected an elevation of transcripts containing intron 1a (upstream of the repeat) in patients carrying a C9orf72 repeat expansion compared to (disease) controls (p ≤ 0.01), an indication of abortive transcripts and/or a switch in transcription start site usage. While methylation and expression levels were relatively stable over time, fluctuations were seen in repeat length. Interestingly, contractions occurred frequently in parent-offspring transmissions (> 50%), especially in paternal transmissions. Furthermore, smaller repeat lengths were detected in currently unaffected individuals than in affected individuals (p = 8.9e-04) and they were associated with an earlier age at collection (p = 0.008). CONCLUSIONS: In blood from C9orf72 expansion carriers, we found elevated methylation levels, reduced expression levels, and unstable expansions that tend to contract in successive generations, arguing against anticipation.


Assuntos
Esclerose Lateral Amiotrófica/genética , Proteína C9orf72/genética , Demência Frontotemporal/genética , Idoso , Estudos de Coortes , Metilação de DNA/genética , Expansão das Repetições de DNA , Feminino , Heterozigoto , Humanos , Masculino , Pessoa de Meia-Idade , Regiões Promotoras Genéticas/genética
4.
Acta Neuropathol ; 137(6): 879-899, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30739198

RESUMO

Frontotemporal lobar degeneration with neuronal inclusions of the TAR DNA-binding protein 43 (FTLD-TDP) represents the most common pathological subtype of FTLD. We established the international FTLD-TDP whole-genome sequencing consortium to thoroughly characterize the known genetic causes of FTLD-TDP and identify novel genetic risk factors. Through the study of 1131 unrelated Caucasian patients, we estimated that C9orf72 repeat expansions and GRN loss-of-function mutations account for 25.5% and 13.9% of FTLD-TDP patients, respectively. Mutations in TBK1 (1.5%) and other known FTLD genes (1.4%) were rare, and the disease in 57.7% of FTLD-TDP patients was unexplained by the known FTLD genes. To unravel the contribution of common genetic factors to the FTLD-TDP etiology in these patients, we conducted a two-stage association study comprising the analysis of whole-genome sequencing data from 517 FTLD-TDP patients and 838 controls, followed by targeted genotyping of the most associated genomic loci in 119 additional FTLD-TDP patients and 1653 controls. We identified three genome-wide significant FTLD-TDP risk loci: one new locus at chromosome 7q36 within the DPP6 gene led by rs118113626 (p value = 4.82e - 08, OR = 2.12), and two known loci: UNC13A, led by rs1297319 (p value = 1.27e - 08, OR = 1.50) and HLA-DQA2 led by rs17219281 (p value = 3.22e - 08, OR = 1.98). While HLA represents a locus previously implicated in clinical FTLD and related neurodegenerative disorders, the association signal in our study is independent from previously reported associations. Through inspection of our whole-genome sequence data for genes with an excess of rare loss-of-function variants in FTLD-TDP patients (n ≥ 3) as compared to controls (n = 0), we further discovered a possible role for genes functioning within the TBK1-related immune pathway (e.g., DHX58, TRIM21, IRF7) in the genetic etiology of FTLD-TDP. Together, our study based on the largest cohort of unrelated FTLD-TDP patients assembled to date provides a comprehensive view of the genetic landscape of FTLD-TDP, nominates novel FTLD-TDP risk loci, and strongly implicates the immune pathway in FTLD-TDP pathogenesis.


Assuntos
Proteínas do Tecido Nervoso/genética , Proteinopatias TDP-43/genética , Idoso , Expansão das Repetições de DNA , Dipeptidil Peptidases e Tripeptidil Peptidases/genética , Feminino , Lobo Frontal/metabolismo , Degeneração Lobar Frontotemporal/genética , Degeneração Lobar Frontotemporal/imunologia , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Antígenos HLA-DQ/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Mutação com Perda de Função , Masculino , Pessoa de Meia-Idade , Proteínas do Tecido Nervoso/fisiologia , Canais de Potássio/genética , Progranulinas/genética , Progranulinas/fisiologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas/genética , Proteínas/fisiologia , RNA Mensageiro/biossíntese , Fatores de Risco , Análise de Sequência de RNA , Sociedades Científicas , Proteinopatias TDP-43/imunologia , População Branca/genética
5.
Lancet Neurol ; 17(6): 548-558, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29724592

RESUMO

BACKGROUND: Loss-of-function mutations in GRN cause frontotemporal lobar degeneration (FTLD). Patients with GRN mutations present with a uniform subtype of TAR DNA-binding protein 43 (TDP-43) pathology at autopsy (FTLD-TDP type A); however, age at onset and clinical presentation are variable, even within families. We aimed to identify potential genetic modifiers of disease onset and disease risk in GRN mutation carriers. METHODS: The study was done in three stages: a discovery stage, a replication stage, and a meta-analysis of the discovery and replication data. In the discovery stage, genome-wide logistic and linear regression analyses were done to test the association of genetic variants with disease risk (case or control status) and age at onset in patients with a GRN mutation and controls free of neurodegenerative disorders. Suggestive loci (p<1 × 10-5) were genotyped in a replication cohort of patients and controls, followed by a meta-analysis. The effect of genome-wide significant variants at the GFRA2 locus on expression of GFRA2 was assessed using mRNA expression studies in cerebellar tissue samples from the Mayo Clinic brain bank. The effect of the GFRA2 locus on progranulin concentrations was studied using previously generated ELISA-based expression data. Co-immunoprecipitation experiments in HEK293T cells were done to test for a direct interaction between GFRA2 and progranulin. FINDINGS: Individuals were enrolled in the current study between Sept 16, 2014, and Oct 5, 2017. After quality control measures, statistical analyses in the discovery stage included 382 unrelated symptomatic GRN mutation carriers and 1146 controls free of neurodegenerative disorders collected from 34 research centres located in the USA, Canada, Australia, and Europe. In the replication stage, 210 patients (67 symptomatic GRN mutation carriers and 143 patients with FTLD without GRN mutations pathologically confirmed as FTLD-TDP type A) and 1798 controls free of neurodegenerative diseases were recruited from 26 sites, 20 of which overlapped with the discovery stage. No genome-wide significant association with age at onset was identified in the discovery or replication stages, or in the meta-analysis. However, in the case-control analysis, we replicated the previously reported TMEM106B association (rs1990622 meta-analysis odds ratio [OR] 0·54, 95% CI 0·46-0·63; p=3·54 × 10-16), and identified a novel genome-wide significant locus at GFRA2 on chromosome 8p21.3 associated with disease risk (rs36196656 meta-analysis OR 1·49, 95% CI 1·30-1·71; p=1·58 × 10-8). Expression analyses showed that the risk-associated allele at rs36196656 decreased GFRA2 mRNA concentrations in cerebellar tissue (p=0·04). No effect of rs36196656 on plasma and CSF progranulin concentrations was detected by ELISA; however, co-immunoprecipitation experiments in HEK293T cells did suggest a direct binding of progranulin and GFRA2. INTERPRETATION: TMEM106B-related and GFRA2-related pathways might be future targets for treatments for FTLD, but the biological interaction between progranulin and these potential disease modifiers requires further study. TMEM106B and GFRA2 might also provide opportunities to select and stratify patients for future clinical trials and, when more is known about their potential effects, to inform genetic counselling, especially for asymptomatic individuals. FUNDING: National Institute on Aging, National Institute of Neurological Disorders and Stroke, Canadian Institutes of Health Research, Italian Ministry of Health, UK National Institute for Health Research, National Health and Medical Research Council of Australia, and the French National Research Agency.


Assuntos
Degeneração Lobar Frontotemporal/genética , Predisposição Genética para Doença/genética , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Mutação/genética , Progranulinas/genética , Idade de Início , Idoso , Estudos de Casos e Controles , Cerebelo/metabolismo , Feminino , Degeneração Lobar Frontotemporal/metabolismo , Estudo de Associação Genômica Ampla , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Progranulinas/metabolismo , RNA Mensageiro/metabolismo
6.
Mov Disord ; 32(1): 115-123, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27709685

RESUMO

BACKGROUND: Mutations in the leucine-rich repeat kinase 2 gene (LRRK2) are the most common genetic cause of Parkinson's disease (PD). Unexpectedly, tau pathology has been reported in a subset of LRRK2 mutation carriers. METHODS: To estimate the frequency of pathogenic LRRK2 mutations and to evaluate the association of common LRRK2 variants with risk of primary tauopathies, we studied 1039 progressive supranuclear palsy (PSP) and 145 corticobasal degeneration patients from the Mayo Clinic Florida brain bank and 1790 controls ascertained at Mayo Clinic. Sanger sequencing of LRRK2 exons 30, 31, 35, and 41 was performed in all patients, and genotyping of all 17 known exonic variants with minor allele frequency >0.5% was performed in patients and controls. RESULTS: LRRK2 mutational screening identified 2 known pathogenic mutations (p.G2019S and p.R1441C), each in 1 PSP patient, the novel p.A1413T mutation in a PSP patient and the rare p.R1707K mutation in a corticobasal degeneration patient. Both p.A1413T and p.R1707K mutations were predicted damaging by at least 2 of 3 prediction programs and affect evolutionary conserved sites of LRRK2. Association analysis using common LRRK2 variants only showed nominal association of the p.L153L variant with PSP. CONCLUSIONS: Our study confirms the presence of pathogenic and potentially pathogenic LRRK2 mutations in pathologically confirmed primary tauopathies, albeit with low frequency. In contrast to PD, common LRRK2 variants do not appear to play a major role in determining PSP and corticobasal degeneration risk. © 2016 International Parkinson and Movement Disorder Society.


Assuntos
Doenças dos Gânglios da Base/genética , Encéfalo/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Tauopatias/genética , Doenças dos Gânglios da Base/sangue , Doenças dos Gânglios da Base/metabolismo , Encéfalo/patologia , Humanos , Paralisia Supranuclear Progressiva/sangue , Paralisia Supranuclear Progressiva/genética , Paralisia Supranuclear Progressiva/metabolismo , Tauopatias/sangue , Tauopatias/metabolismo
7.
Neurobiol Aging ; 48: 222.e9-222.e15, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27658901

RESUMO

We aimed to identify new candidate genes potentially involved in early-onset Alzheimer's disease (EOAD). Exome sequencing was conducted on 45 EOAD patients with either a family history of Alzheimer's disease (AD, <65 years) or an extremely early age at the onset (≤55 years) followed by multiple variant filtering according to different modes of inheritance. We identified 29 candidate genes potentially involved in EOAD, of which the gene TYROBP, previously implicated in AD, was selected for genetic and functional follow-up. Using 3 patient cohorts, we observed rare coding TYROBP variants in 9 out of 1110 EOAD patients, whereas no such variants were detected in 1826 controls (p = 0.0001), suggesting that at least some rare TYROBP variants might contribute to EOAD risk. Overexpression of the p.D50_L51ins14 TYROBP mutant led to a profound reduction of TREM2 expression, a well-established risk factor for AD. This is the first study supporting a role for genetic variation in TYROBP in EOAD, with in vitro support for a functional effect of the p.D50_L51ins14 TYROBP mutation on TREM2 expression.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Doença de Alzheimer/genética , Estudos de Associação Genética , Variação Genética/genética , Proteínas de Membrana/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Regulação para Baixo/genética , Exoma/genética , Feminino , Expressão Gênica/genética , Células HeLa , Humanos , Masculino , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Pessoa de Meia-Idade , Mutação/genética , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo , Análise de Sequência
8.
Am J Neurodegener Dis ; 5(1): 94-101, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27073747

RESUMO

Mutations in the gene encoding the presenilin-1 protein (PSEN1) were first discovered to cause Alzheimer's disease (AD) 20 years ago. Since then more than 200 different pathogenic mutations have been reported, including a p.Gly206Ala founder mutation in the Hispanic population. Here we report mutation analysis of known AD genes in a cohort of 27 early-onset (age of onset ≤65, age of death ≤70) Hispanic patients ascertained in Florida. The PSEN1 p.Gly206Ala mutation was identified in 13 out of 27 patients (48.1%), emphasizing the importance of this specific mutation in the etiology of early-onset AD in this population. One other patient carried the known PSEN1 p.Gly378Val mutation. Genotyping of the PSEN1 p.Gly206Ala and p.Gly378Val mutations in 63 late-onset Hispanic AD patients did not identify additional mutation carriers. All p.Gly206Ala mutation carriers shared rare alleles at two microsatellite markers flanking PSEN1 supporting a common founder. This study confirms the p.Gly206Ala variant as a frequent cause of early onset AD in the Hispanic population and for the first time reports the high frequency of this mutation in Hispanics in Florida.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA