Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 15: 1380647, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38903791

RESUMO

Drosophila melanogaster has been used extensively for dissecting the genetic and functional bases of host innate antiviral immunity and virus-induced pathology. Previous studies have shown that the presence of Wolbachia endosymbionts in D. melanogaster confers resistance to infection by certain viral pathogens. Zika virus is an important vector-borne pathogen that has recently expanded its range due to the wide geographical distribution of the mosquito vector. Here, we describe the effect of Wolbachia on the immune response of D. melanogaster adult flies following Zika virus infection. First, we show that the presence of Wolbachia endosymbionts promotes the longevity of uninfected D. melanogaster wild type adults and increases the survival response of flies following Zika virus injection. We find that the latter effect is more pronounced in females rather than in males. Then, we show that the presence of Wolbachia regulates Zika virus replication during Zika virus infection of female flies. In addition, we demonstrate that the antimicrobial peptide-encoding gene Drosocin and the sole Jun N-terminal kinase-specific MAPK phosphatase Puckered are upregulated in female adult flies, whereas the immune and stress response gene TotM is upregulated in male individuals. Finally, we find that the activity of RNA interference and Toll signaling remain unaffected in Zika virus-infected female and male adults containing Wolbachia compared to flies lacking the endosymbionts. Our results reveal that Wolbachia endosymbionts in D. melanogaster affect innate immune signaling activity in a sex-specific manner, which in turn influences host resistance to Zika virus infection. This information contributes to a better understanding of the complex interrelationship between insects, their endosymbiotic bacteria, and viral infection. Interpreting these processes will help us design more effective approaches for controlling insect vectors of infectious disease.

2.
Sci Rep ; 13(1): 16329, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37770488

RESUMO

Ranges of tardigrade intraspecific and interspecific variability are not precisely defined, both in terms of morphology and genetics, rendering descriptions of new taxa a cumbersome task. This contribution enhances the morphological and molecular dataset available for the heterotardigrade genus Viridiscus by supplying new information on Southern Nearctic populations of V. perviridis, V. viridianus, and a new species from Tennessee. We demonstrate that, putting aside already well-documented cases of significant variability in chaetotaxy, the dorsal plate sculpturing and other useful diagnostic characters, such as morphology of clavae and pedal platelets, may also be more phenotypically plastic characters at the species level than previously assumed. As a result of our integrative analyses, V. viridianus is redescribed, V. celatus sp. nov. described, and V. clavispinosus designated as nomen inquirendum, and its junior synonymy with regard to V. viridianus suggested. Morphs of three Viridiscus species (V. perviridis, V. viridianus, and V. viridissimus) are depicted, and the implications for general echiniscid taxonomy are drawn. We emphasise that taxonomic conclusions reached solely through morphological or molecular analyses lead to a distorted view on tardigrade α-diversity.


Assuntos
Tardígrados , Animais , Tardígrados/genética , Filogenia , Tennessee
3.
Philos Trans R Soc Lond B Biol Sci ; 378(1882): 20220126, 2023 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-37305917

RESUMO

With emerging diseases on the rise, there is an urgent need to identify and understand novel mechanisms of prophylactic protection in vertebrate hosts. Inducing resistance against emerging pathogens through prophylaxis is an ideal management strategy that may impact pathogens and their host-associated microbiome. The host microbiome is recognized as a critical component of immunity, but the effects of prophylactic inoculation on the microbiome are unknown. In this study, we investigate the effects of prophylaxis on host microbiome composition, focusing on the selection of anti-pathogenic microbes contributing to host acquired immunity in a model host-fungal disease system, amphibian chytridiomycosis. We inoculated larval Pseudacris regilla against the fungal pathogen Batrachochytrium dendrobatidis (Bd) with a Bd metabolite-based prophylactic. Increased prophylactic concentration and exposure duration were associated with significant increases in proportions of putatively Bd-inhibitory host-associated bacterial taxa, indicating a protective prophylactic-induced shift towards microbiome members that are antagonistic to Bd. Our findings are in accordance with the adaptive microbiome hypothesis, where exposure to a pathogen alters the microbiome to better cope with subsequent pathogen encounters. Our study advances research on the temporal dynamics of microbiome memory and the role of prophylaxis-induced shifts in microbiomes contributing to prophylaxis effectiveness. This article is part of the theme issue 'Amphibian immunity: stress, disease and ecoimmunology'.


Assuntos
Anuros , Microbiota , Animais , Pele , Larva , Modelos Biológicos
5.
iScience ; 26(4): 106424, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37009222

RESUMO

Severe neurological complications affecting brain growth and function have been well documented in newborn and adult patients infected by Zika virus (ZIKV), but the underlying mechanisms remain unknown. Here we use a Drosophila melanogaster mutant, cheesehead (chs), with a mutation in the brain tumor (brat) locus that exhibits both aberrant continued proliferation and progressive neurodegeneration in the adult brain. We report that temperature variability is a key driver of ZIKV pathogenesis, thereby altering host mortality and causing motor dysfunction in a sex-dependent manner. Furthermore, we show that ZIKV is largely localized to the brat chs brain and activates the RNAi and apoptotic immune responses. Our findings establish an in vivo model to study host innate immune responses and highlight the need of evaluating neurodegenerative deficits as a potential comorbidity in ZIKV-infected adults.

6.
Aging (Albany NY) ; 15(6): 1748-1767, 2023 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-36947702

RESUMO

Aging is accompanied by increased susceptibility to infections including with viral pathogens resulting in higher morbidity and mortality among the elderly. Significant changes in host metabolism can take place following virus infection. Efficient immune responses are energetically costly, and viruses divert host molecular resources to promote their own replication. Virus-induced metabolic reprogramming could impact infection outcomes, however, how this is affected by aging and impacts organismal survival remains poorly understood. RNA virus infection of Drosophila melanogaster with Flock House virus (FHV) is an effective model to study antiviral responses with age, where older flies die faster than younger flies due to impaired disease tolerance. Using this aged host-virus model, we conducted longitudinal, single-fly respirometry studies to determine if metabolism impacts infection outcomes. Analysis using linear mixed models on Oxygen Consumption Rate (OCR) following the first 72-hours post-infection showed that FHV modulates respiration, but age has no significant effect on OCR. However, the longitudinal assessment revealed that OCR in young flies progressively and significantly decreases, while OCR in aged flies remains constant throughout the three days of the experiment. Furthermore, we found that the OCR signature at 24-hours varied in response to both experimental treatment and survival status. FHV-injected flies that died prior to 48- or 72-hours measurements had a lower OCR compared to survivors at 48-hours. Our findings suggest the host's metabolic profile could influence the outcome of viral infections.


Assuntos
Nodaviridae , Vírus de RNA , Viroses , Animais , Masculino , Drosophila melanogaster/genética , Vírus de RNA/genética , Nodaviridae/genética , Consumo de Oxigênio
7.
Cell Rep ; 42(1): 112004, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36641750

RESUMO

Previous work in our laboratory has shown that mutations in prickle (pk) cause myoclonic-like seizures and ataxia in Drosophila, similar to what is observed in humans carrying mutations in orthologous PRICKLE genes. Here, we show that pk mutant brains show elevated, sustained neuronal cell death that correlates with increasing seizure penetrance, as well as an upregulation of mitochondrial oxidative stress and innate immune response (IIR) genes. Moreover, flies exhibiting more robust seizures show increased levels of IIR-associated target gene expression suggesting they may be linked. Genetic knockdown in glia of either arm of the IIR (Immune Deficiency [Imd] or Toll) leads to a reduction in neuronal death, which in turn suppresses seizure activity, with oxidative stress acting upstream of IIR. These data provide direct genetic evidence that oxidative stress in combination with glial-mediated IIR leads to progression of an epilepsy disorder.


Assuntos
Drosophila melanogaster , Epilepsia , Animais , Humanos , Regulação para Baixo , Drosophila melanogaster/genética , Convulsões/genética , Convulsões/metabolismo , Epilepsia/metabolismo , Neuroglia/metabolismo , Drosophila , Estresse Oxidativo , Imunidade Inata/genética
8.
Fly (Austin) ; 16(1): 382-396, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36412256

RESUMO

MicroRNAs (miRNAs) are a class of small non-coding RNAs ~19-22 nt long which post-transcriptionally regulate gene expression. Their ability to exhibit dynamic expression patterns coupled with their wide variety of targets allows miRNAs to regulate many processes, including the innate immune response of Drosophila melanogaster. Recent studies have identified miRNAs in Drosophila which are differentially expressed during infection with different pathogens as well as miRNAs that may affect immune signalling when differentially expressed. This review provides an overview of miRNAswhich have been identified to play a role in the immune response of Drosophila through targeting of the Toll and IMD signalling pathways and other immune processes. It will also explore the role of miRNAs in fine-tuning the immune response in Drosophila and highlight current gaps in knowledge regarding the role of miRNAs in immunity and areas for further research.


Assuntos
Proteínas de Drosophila , MicroRNAs , Animais , Drosophila/genética , MicroRNAs/genética , Drosophila melanogaster/metabolismo , Imunidade Inata/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo
10.
Microorganisms ; 9(5)2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33946849

RESUMO

This review outlines the known cellular pathways and mechanisms involved in Drosophila age-dependent immunity to pathogenic microorganisms such as bacteria and fungi. We discuss the implication of host signaling pathways such as the Toll, Immune Deficiency (IMD), Janus kinase signal transducer and activator of transcription (JAK/STAT), and Insulin/Insulin Growth Factor/Target of Rapamycin (IIS/TOR) on immune function with aging. Additionally, we review the effects that factors such as sexual dimorphism, environmental stress, and cellular physiology exert on age-dependent immunity in Drosophila. We discuss potential tradeoffs between heightened immune function and longevity in the absence of infection, and we provide detailed tables outlining the various assays and pathogens used in the cited studies, as well as the age, sex, and strains of Drosophila used. We also discuss the overlapping effects these pathways and mechanisms have on one another. We highlight the great utility of Drosophila as a model organism and the importance of a greater focus on age-dependent antiviral immunity for future studies.

11.
G3 (Bethesda) ; 11(7)2021 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-33836060

RESUMO

Advanced age in humans is associated with greater susceptibility to and higher mortality rates from infections, including infections with some RNA viruses. The underlying innate immune mechanisms, which represent the first line of defense against pathogens, remain incompletely understood. Drosophila melanogaster is able to mount potent and evolutionarily conserved innate immune defenses against a variety of microorganisms including viruses and serves as an excellent model organism for studying host-pathogen interactions. With its relatively short lifespan, Drosophila also is an organism of choice for aging studies. Despite numerous advantages that this model offers, Drosophila has not been used to its full potential to investigate the response of the aged host to viral infection. Here, we show that, in comparison to younger flies, aged Drosophila succumb more rapidly to infection with the RNA-containing Flock House virus due to an age-dependent defect in disease tolerance. Relative to younger individuals, we find that older Drosophila mount transcriptional responses characterized by differential regulation of more genes and genes regulated to a greater extent. We show that loss of disease tolerance to Flock House virus with age associates with a stronger regulation of genes involved in apoptosis, some genes of the Drosophila immune deficiency NF-kB pathway, and genes whose products function in mitochondria and mitochondrial respiration. Our work shows that Drosophila can serve as a model to investigate host-virus interactions during aging and furthermore sets the stage for future analysis of the age-dependent mechanisms that govern survival and control of virus infections at older age.


Assuntos
Envelhecimento , Nodaviridae , Infecções por Vírus de RNA , Animais , Drosophila melanogaster/genética , Infecções por Vírus de RNA/genética
12.
Int J Mol Sci ; 21(9)2020 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-32357532

RESUMO

Drosophila melanogaster provides a powerful genetic model system in which to investigate the molecular mechanisms underlying neurodegenerative diseases. In this review, we discuss recent progress in Drosophila modeling Alzheimer's Disease, Parkinson's Disease, Amyotrophic Lateral Sclerosis (ALS), Huntington's Disease, Ataxia Telangiectasia, and neurodegeneration related to mitochondrial dysfunction or traumatic brain injury. We close by discussing recent progress using Drosophila models of neural regeneration and how these are likely to provide critical insights into future treatments for neurodegenerative disorders.


Assuntos
Proteínas de Drosophila/genética , Predisposição Genética para Doença/genética , Doenças Neurodegenerativas/patologia , Animais , Animais Geneticamente Modificados , Modelos Animais de Doenças , Drosophila melanogaster , Humanos , Mutação , Regeneração Nervosa , Doenças Neurodegenerativas/genética
13.
Sci Rep ; 9(1): 12714, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31481676

RESUMO

Parkinson's disease (PD) is a progressive, neurodegenerative movement disorder characterized by the loss of dopaminergic (DA) neurons. Limited understanding of the early molecular pathways associated with the demise of DA neurons, including those of inflammatory exacerbation of neurodegeneration, is a major impediment to therapeutic development. Recent studies have implicated gene-environment interactions in PD susceptibility. We used transcriptomic profiling in a Drosophila PD model in response to paraquat (PQ)-induced oxidative stress to identify pre-symptomatic signatures of impending neuron dysfunction. Our RNAseq data analysis revealed extensive regulation of innate immune response genes following PQ ingestion. We found that PQ exposure leads to the activation of the NF-κB transcription factor, Relish, and the stress signaling factor JNK, encoded by the gene basket in Drosophila. Relish knockdown in the dopaminergic neurons confers PQ resistance and rescues mobility defects and DA neuron loss. Furthermore, PQ-induced toxicity is mediated through the immune deficiency signaling pathway. Surprisingly, the expression of Relish-dependent anti-microbial peptide (AMPs) genes is suppressed upon PQ exposure causing increased sensitivity to Gram-negative bacterial infection. This work provides a novel link between PQ exposure and innate immune system modulation underlying environmental toxin-induced neurodegeneration, thereby underscoring the role of the innate immune system in PD pathogenesis.


Assuntos
Perfilação da Expressão Gênica , Imunidade Inata , Paraquat/toxicidade , Doença de Parkinson Secundária , Transdução de Sinais/imunologia , Animais , Proteínas de Drosophila , Drosophila melanogaster , Humanos , Doença de Parkinson Secundária/induzido quimicamente , Doença de Parkinson Secundária/imunologia , Transdução de Sinais/efeitos dos fármacos
14.
J Vis Exp ; (149)2019 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-31355794

RESUMO

There is much to understand about the onset and progression of neurodegenerative diseases, including the underlying genes responsible. Forward genetic screening using chemical mutagens is a useful strategy for mapping mutant phenotypes to genes among Drosophila and other model organisms that share conserved cellular pathways with humans. If the mutated gene of interest is not lethal in early developmental stages of flies, a climbing assay can be conducted to screen for phenotypic indicators of decreased brain functioning, such as low climbing rates. Subsequently, secondary histological analysis of brain tissue can be performed in order to verify the neuroprotective function of the gene by scoring neurodegeneration phenotypes. Gene mapping strategies include meiotic and deficiency mapping that rely on these same assays can be followed by DNA sequencing to identify possible nucleotide changes in the gene of interest.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Animais , Humanos , Neuroproteção
15.
Int J Mol Sci ; 19(12)2018 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-30544507

RESUMO

Innate immunity is the first line of defense against invading pathogens and plays an essential role in defending the brain against infection, injury, and disease. It is currently well recognized that central nervous system (CNS) infections can result in long-lasting neurological sequelae and that innate immune and inflammatory reactions are highly implicated in the pathogenesis of neurodegeneration. Due to the conservation of the mechanisms that govern neural development and innate immune activation from flies to mammals, the lack of a classical adaptive immune system and the availability of numerous genetic and genomic tools, the fruit fly Drosophila melanogaster presents opportunities to investigate the cellular and molecular mechanisms associated with immune function in brain tissue and how they relate to infection, injury and neurodegenerative diseases. Here, we present an overview of currently identified innate immune mechanisms specific to the adult Drosophila brain.


Assuntos
Encéfalo/imunologia , Imunidade Inata/imunologia , Animais , Autofagia/imunologia , Autofagia/fisiologia , Encéfalo/metabolismo , Drosophila , Imunidade Inata/fisiologia , Modelos Animais , Fagocitose/imunologia , Fagocitose/fisiologia
16.
G3 (Bethesda) ; 8(10): 3331-3346, 2018 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-30126833

RESUMO

A screen for neuroprotective genes in Drosophila melanogaster led to the identification of a mutation that causes extreme, progressive loss of adult brain neuropil in conjunction with massive brain overgrowth. We mapped the mutation to the brain tumor (brat) locus, which encodes a tripartite motif-NCL-1, HT2A, and LIN-41 (TRIM-NHL) RNA-binding protein with established roles limiting stem cell proliferation in developing brain and ovary. However, a neuroprotective role for brat in the adult Drosophila brain has not been described previously. The new allele, bratcheesehead (bratchs ), carries a mutation in the coiled-coil domain of the TRIM motif, and is temperature-sensitive. We demonstrate that mRNA and protein levels of neural stem cell genes are increased in heads of adult bratchs mutants and that the over-proliferation phenotype initiates prior to adult eclosion. We also report that disruption of an uncharacterized gene coding for a presumptive prolyl-4-hydroxylase strongly enhances the over-proliferation and neurodegeneration phenotypes. Together, our results reveal an unexpected role for brat that could be relevant to human cancer and neurodegenerative diseases.


Assuntos
Neoplasias Encefálicas/genética , Proteínas de Drosophila/genética , Drosophila/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Mutação , Doenças Neurodegenerativas/genética , Animais , Biomarcadores , Encéfalo/metabolismo , Encéfalo/patologia , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Diferenciação Celular/genética , Proliferação de Células , Progressão da Doença , Proteínas de Drosophila/química , Expressão Gênica , Imuno-Histoquímica , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Neuroglia/citologia , Neuroglia/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Fenótipo , Domínios Proteicos
17.
Front Immunol ; 9: 1362, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29942319

RESUMO

Increasing body of evidence indicates that proper glial function plays an important role in neuroprotection and in organismal physiology throughout lifespan. Work done in the model organism Drosophila melanogaster has revealed important aspects of glial cell biology in the contexts of longevity and neurodegeneration. In this mini review, we summarize recent findings from work done in the fruit fly Drosophila about the role of glia in maintaining a healthy status during animal's life and discuss the involvement of glial innate immune pathways in lifespan and neurodegeneration. Overactive nuclear factor kappa B (NF-κB) pathways and defective phagocytosis appear to be major contributors to lifespan shortening and neuropathology. Glial NF-κB silencing on the other hand, extends lifespan possibly through an immune-neuroendocrine axis. Given the evolutionary conservation of NF-κB innate immune signaling and of macrophage ontogeny across fruit flies, rodents, and humans, the above observations in glia could potentially support efforts for therapeutic interventions targeting to ameliorate age-related pathologies.

18.
Cell Rep ; 19(4): 836-848, 2017 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-28445733

RESUMO

During aging, innate immunity progresses to a chronically active state. However, what distinguishes those that "age well" from those developing age-related neurological conditions is unclear. We used Drosophila to explore the cost of immunity in the aging brain. We show that mutations in intracellular negative regulators of the IMD/NF-κB pathway predisposed flies to toxic levels of antimicrobial peptides, resulting in early locomotor defects, extensive neurodegeneration, and reduced lifespan. These phenotypes were rescued when immunity was suppressed in glia. In healthy flies, suppressing immunity in glial cells resulted in increased adipokinetic hormonal signaling with high nutrient levels in later life and an extension of active lifespan. Thus, when levels of IMD/NF-κB deviate from normal, two mechanisms are at play: lower levels derepress an immune-endocrine axis, which mobilizes nutrients, leading to lifespan extension, whereas higher levels increase antimicrobial peptides, causing neurodegeneration. Immunity in the fly brain is therefore a key lifespan determinant.


Assuntos
Envelhecimento , Encéfalo/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Imunidade Inata , NF-kappa B/metabolismo , Animais , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/metabolismo , Proteínas de Drosophila/antagonistas & inibidores , Proteínas de Drosophila/genética , Glicopeptídeos/genética , Glicopeptídeos/metabolismo , Hormônios de Inseto/genética , Hormônios de Inseto/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Longevidade , Doenças Neurodegenerativas/mortalidade , Doenças Neurodegenerativas/patologia , Doenças Neurodegenerativas/veterinária , Neuroglia/metabolismo , Oligopeptídeos/genética , Oligopeptídeos/metabolismo , Ácido Pirrolidonocarboxílico/análogos & derivados , Ácido Pirrolidonocarboxílico/metabolismo , Interferência de RNA , RNA Mensageiro/metabolismo , Transdução de Sinais , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
19.
Elife ; 42015 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-25742603

RESUMO

Traumatic brain injury (TBI) is a major cause of death and disability worldwide. Unfavorable TBI outcomes result from primary mechanical injuries to the brain and ensuing secondary non-mechanical injuries that are not limited to the brain. Our genome-wide association study of Drosophila melanogaster revealed that the probability of death following TBI is associated with single nucleotide polymorphisms in genes involved in tissue barrier function and glucose homeostasis. We found that TBI causes intestinal and blood-brain barrier dysfunction and that intestinal barrier dysfunction is highly correlated with the probability of death. Furthermore, we found that ingestion of glucose after a primary injury increases the probability of death through a secondary injury mechanism that exacerbates intestinal barrier dysfunction. Our results indicate that natural variation in the probability of death following TBI is due in part to genetic differences that affect intestinal barrier dysfunction.


Assuntos
Lesões Encefálicas/genética , Proteínas de Drosophila/genética , Mucosa Intestinal/metabolismo , Polimorfismo de Nucleotídeo Único , Animais , Animais Recém-Nascidos , Carga Bacteriana , Barreira Hematoaquosa/metabolismo , Barreira Hematoaquosa/fisiopatologia , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/fisiopatologia , Barreira Hematorretiniana/metabolismo , Barreira Hematorretiniana/fisiopatologia , Lesões Encefálicas/metabolismo , Lesões Encefálicas/mortalidade , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Expressão Gênica , Glucose/administração & dosagem , Glucose/metabolismo , Glucose/farmacologia , Hemolinfa/metabolismo , Hemolinfa/microbiologia , Humanos , Intestinos/efeitos dos fármacos , Intestinos/fisiopatologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Risco , Taxa de Sobrevida , Fatores de Tempo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
20.
J Virol ; 88(24): 14057-69, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25253354

RESUMO

UNLABELLED: Drosophila C virus (DCV) is a positive-sense RNA virus belonging to the Dicistroviridae family. This natural pathogen of the model organism Drosophila melanogaster is commonly used to investigate antiviral host defense in flies, which involves both RNA interference and inducible responses. Although lethality is used routinely as a readout for the efficiency of the antiviral immune response in these studies, virus-induced pathologies in flies still are poorly understood. Here, we characterize the pathogenesis associated with systemic DCV infection. Comparison of the transcriptome of flies infected with DCV or two other positive-sense RNA viruses, Flock House virus and Sindbis virus, reveals that DCV infection, unlike those of the other two viruses, represses the expression of a large number of genes. Several of these genes are expressed specifically in the midgut and also are repressed by starvation. We show that systemic DCV infection triggers a nutritional stress in Drosophila which results from intestinal obstruction with the accumulation of peritrophic matrix at the entry of the midgut and the accumulation of the food ingested in the crop, a blind muscular food storage organ. The related virus cricket paralysis virus (CrPV), which efficiently grows in Drosophila, does not trigger this pathology. We show that DCV, but not CrPV, infects the smooth muscles surrounding the crop, causing extensive cytopathology and strongly reducing the rate of contractions. We conclude that the pathogenesis associated with systemic DCV infection results from the tropism of the virus for an important organ within the foregut of dipteran insects, the crop. IMPORTANCE: DCV is one of the few identified natural viral pathogens affecting the model organism Drosophila melanogaster. As such, it is an important virus for the deciphering of host-virus interactions in insects. We characterize here the pathogenesis associated with DCV infection in flies and show that it results from the tropism of the virus for an essential but poorly characterized organ in the digestive tract, the crop. Our results may have relevance for other members of the Dicistroviridae, some of which are pathogenic to beneficial or pest insect species.


Assuntos
Dicistroviridae/crescimento & desenvolvimento , Drosophila melanogaster/virologia , Obstrução Intestinal/virologia , Animais , Dicistroviridae/fisiologia , Feminino , Trato Gastrointestinal/patologia , Trato Gastrointestinal/fisiopatologia , Trato Gastrointestinal/virologia , Perfilação da Expressão Gênica , Músculo Liso/virologia , Nodaviridae/crescimento & desenvolvimento , Sindbis virus/crescimento & desenvolvimento , Tropismo Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA