Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 52(12): 7321-7336, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38842933

RESUMO

The ParABS system, composed of ParA (an ATPase), ParB (a DNA binding protein), and parS (a centromere-like DNA), regulates bacterial chromosome partition. The ParB-parS partition complex interacts with the nucleoid-bound ParA to form the nucleoid-adaptor complex (NAC). In Helicobacter pylori, ParA and ParB homologs are encoded as HpSoj and HpSpo0J (HpParA and HpParB), respectively. We determined the crystal structures of the ATP hydrolysis deficient mutant, HpParAD41A, and the HpParAD41A-DNA complex. We assayed the CTPase activity of HpParB and identified two potential DNA binding modes of HpParB regulated by CTP, one is the specific DNA binding by the DNA binding domain and the other is the non-specific DNA binding through the C-terminal domain under the regulation of CTP. We observed an interaction between HpParAD41A and the N-terminus fragment of HpParB (residue 1-10, HpParBN10) and determined the crystal structure of the ternary complex, HpParAD41A-DNA-HpParBN10 complex which mimics the NAC formation. HpParBN10 binds near the HpParAD41A dimer interface and is clamped by flexible loops, L23 and L34, through a specific cation-π interaction between Arg9 of HpParBN10 and Phe52 of HpParAD41A. We propose a molecular mechanism model of the ParABS system providing insight into chromosome partition in bacteria.


Assuntos
Proteínas de Bactérias , Cromossomos Bacterianos , Proteínas de Ligação a DNA , Helicobacter pylori , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Helicobacter pylori/genética , Helicobacter pylori/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Cromossomos Bacterianos/metabolismo , Cromossomos Bacterianos/química , Cromossomos Bacterianos/genética , Modelos Moleculares , Cristalografia por Raios X , Ligação Proteica , DNA Bacteriano/metabolismo , DNA Bacteriano/química , DNA Bacteriano/genética , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Segregação de Cromossomos , Trifosfato de Adenosina/metabolismo , Sítios de Ligação
2.
Biochem J ; 477(21): 4313-4326, 2020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-33094809

RESUMO

Leptospirosis is the most common zoonotic disease caused by pathogenic Leptospira, which is classified into three groups according to virulence. Its pathogenic and intermediate species contain leucine-rich repeat (LRR) proteins that are rarely expressed in non-pathogenic strains. In this study, we presented the crystal structure of LSS_11580 (rLRR20) from pathogenic L. santarosai serovar Shermani. X-ray diffraction at a resolution of 1.99 Šrevealed a horseshoe-shaped structure containing seven α-helices and five ß-sheets. Affinity assays indicated that rLRR20 interacts with E-cadherin on the cell surface. Interestingly, its binds to the extracellular (EC) 1 domain in human epithelial (E)-cadherin, which is responsible for binding to another E-cadherin molecule in neighboring cells. Several charged residues on the concave face of LRR20 were predicted to interact with EC1 domain. In the affinity assays, these charged residues were replaced by alanine, and their affinities to E-cadherin were measured. Three vital residues and mutation variants of LRR20, namely D56A, E59A, and E123A, demonstrated significantly reduced affinity to E-cadherin compared with the control. Besides, we also demonstrated that rLRR20 induced the expression of neutrophil gelatinase-associated lipocalin (NGAL) in HK2 cells. The low ability of the three mutation variants to induce NGAL expression further demonstrates this induction. The present findings indicate that LRR20 from pathogenic Leptospira binds to E-cadherin and interacts with its EC1 domain. In addition, its induction of NGAL expression in HK2 cells is associated with acute kidney injury in human.


Assuntos
Caderinas/metabolismo , Cristalografia por Raios X/métodos , Leptospira/metabolismo , Proteínas/química , Proteínas/metabolismo , Proteínas de Transporte/metabolismo , Linhagem Celular , Humanos , Leptospirose/metabolismo , Proteínas de Repetições Ricas em Leucina
3.
Sci Adv ; 6(32): eabb4024, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32821837

RESUMO

Inorganic phosphate (Pi) is a fundamental and essential element for nucleotide biosynthesis, energy supply, and cellular signaling in living organisms. Human phosphate transporter (hPiT) dysfunction causes numerous diseases, but the molecular mechanism underlying transporters remains elusive. We report the structure of the sodium-dependent phosphate transporter from Thermotoga maritima (TmPiT) in complex with sodium and phosphate (TmPiT-Na/Pi) at 2.3-angstrom resolution. We reveal that one phosphate and two sodium ions (Pi-2Na) are located at the core of TmPiT and that the third sodium ion (Nafore) is located near the inner membrane boundary. We propose an elevator-like mechanism for sodium and phosphate transport by TmPiT, with the TmPiT-Na/Pi complex adopting an inward occluded conformation. We found that disease-related hPiT variants carry mutations in the corresponding sodium- and phosphate-binding residues identified in TmPiT. Our three-dimensional structure of TmPiT provides a framework for understanding PiT dysfunction and for future structure-based drug design.

4.
Nucleic Acids Res ; 47(4): 2113-2129, 2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30544248

RESUMO

ParABS, an important DNA partitioning process in chromosome segregation, includes ParA (an ATPase), ParB (a parS binding protein) and parS (a centromere-like DNA). The homologous proteins of ParA and ParB in Helicobacter pylori are HpSoj and HpSpo0J, respectively. We analyzed the ATPase activity of HpSoj and found that it is enhanced by both DNA and HpSpo0J. Crystal structures of HpSoj and its DNA complexes revealed a typical ATPase fold and that it is dimeric. DNA binding by HpSoj is promoted by ATP. The HpSoj-ATP-DNA complex non-specifically binds DNA through a continuous basic binding patch formed by lysine residues, with a single DNA-binding site. This complex exhibits a DNA-binding adept state with an active ATP-bound conformation, whereas the HpSoj-ADP-DNA complex may represent a transient DNA-bound state. Based on structural comparisons, HpSoj exhibits a similar DNA binding surface to the bacterial ParA superfamily, but the archaeal ParA superfamily exhibits distinct non-specific DNA-binding via two DNA-binding sites. We detected the HpSpo0J-HpSoj-DNA complex by electron microscopy and show that this nucleoid-adaptor complex (NAC) is formed through HpSoj and HpSpo0J interaction and parS DNA binding. NAC formation is promoted by HpSoj participation and specific parS DNA facilitation.


Assuntos
Adenosina Trifosfatases/química , Proteínas de Bactérias/química , Segregação de Cromossomos/genética , Helicobacter pylori/genética , Adenosina Trifosfatases/genética , Proteínas de Bactérias/genética , Sítios de Ligação , Centrômero/genética , Cromossomos Bacterianos/genética , Cristalografia por Raios X , DNA/química , DNA/genética , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Helicobacter pylori/química , Helicobacter pylori/patogenicidade
5.
Clin Cancer Res ; 23(15): 4388-4401, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28196873

RESUMO

Purpose: In head and neck squamous cell carcinoma (HNSCC), the incidence of RAS mutation, which is the major cause of cetuximab resistance, is relatively rare compared with the other types of cancers, and the mechanism mediating acquired resistance is unclear compared with the driver gene mutation-mediated de novo resistance. Here, we investigated the driver gene mutation-independent mechanism for cetuximab resistance in HNSCC.Experimental Design: We used the in vitro-selected and in vivo-selected cetuximab-resistant sublines of HNSCC cell lines for investigating the mechanism of acquired resistance to cetuximab. Zebrafish model was applied for evaluating the synergistic effect of combinatory drugs for overcoming cetuximab resistance.Results: The cetuximab-resistant HNSCC cells undergo a Snail-induced epithelial-mesenchymal transition. Mechanistically, Snail induces the expression of lymphotoxin-ß (LTß), a TNF superfamily protein that activates NF-κB, and protein arginine methyltransferase 1 (PRMT1), an arginine methyltransferase that methylates EGFR. LTß interacts with methylated EGFR to promote its ligand-binding ability and dimerization. Furthermore, LTß activates the NF-κB pathway through a LTß receptor-independent mechanism. Combination of an EGFR tyrosine kinase inhibitor and a NF-κB inhibitor effectively suppressed cetuximab-resistant HNSCC and interfering with the EGFR-LTß interaction reverses resistance.Conclusions: Our findings elucidate the mechanism of driver gene mutations-independent mechanism of acquired resistance to cetuximab in HNSCC and also provide potential strategies for combating cetuximab resistance. Clin Cancer Res; 23(15); 4388-401. ©2017 AACR.


Assuntos
Carcinoma de Células Escamosas/tratamento farmacológico , Transição Epitelial-Mesenquimal/genética , Receptores ErbB/genética , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Linfotoxina-beta/genética , NF-kappa B/antagonistas & inibidores , Animais , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Cetuximab/administração & dosagem , Cetuximab/efeitos adversos , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos/genética , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Receptores ErbB/antagonistas & inibidores , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Camundongos , Mutação , NF-kappa B/genética , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/efeitos adversos , Proteína-Arginina N-Metiltransferases/genética , Proteínas Repressoras/genética , Fatores de Transcrição da Família Snail/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço , Ensaios Antitumorais Modelo de Xenoenxerto , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
6.
J Struct Biol ; 194(1): 90-101, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26850168

RESUMO

Helicobacter pylori cell binding factor 2 (HpCBF2) is an antigenic virulence factor belonging to the SurA-like peptidyl-prolyl cis-trans isomerase family with implications for pathogenicity in the human gastrointestinal tract. HpCBF2 possesses PPIase activity and could act as a periplasmic chaperone to regulate outer membrane protein assembly. Here, we measured the isomerization and chaperone activity of HpCBF2, and determined the crystal structure of HpCBF2 in complex with an inhibitor, indole-2-carboxylic acid (I2CA), at 2.4Å resolution. HpCBF2-I2CA forms a homodimer encasing a large central hydrophobic cavity with a basket-like structure, and each monomer contains a PPIase and a chaperone domain. In the HpCBF2-I2CA dimer, the two PPIase domains separate by a distance of 22.8Å, while the two chaperone domains arrange in a domain-swap manner. The PPIase domains bound with I2CA ligand face towards the chaperone domains and are shielded by surrounding hydrophobic residues. With the aid of SAXS experiments, we also revealed domain motion between the apo- and I2CA-bound states of HpCBF2. The domain motion in HpCBF2 might be necessary for the isomerization activity of PPIase and the accommodation of the unfolded and partially folded peptides to refold by chaperone domain.


Assuntos
Proteínas de Bactérias/química , Chaperonas Moleculares/química , Peptidilprolil Isomerase/química , Domínios Proteicos , Multimerização Proteica , Estrutura Secundária de Proteína , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Eletroforese em Gel de Poliacrilamida , Helicobacter pylori/genética , Helicobacter pylori/metabolismo , Modelos Moleculares , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Peptidilprolil Isomerase/genética , Peptidilprolil Isomerase/metabolismo , Ligação Proteica , Espalhamento a Baixo Ângulo , Homologia de Sequência de Aminoácidos , Difração de Raios X
7.
Proc Natl Acad Sci U S A ; 112(21): 6613-8, 2015 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-25964325

RESUMO

Spo0J (stage 0 sporulation protein J, a member of the ParB superfamily) is an essential component of the ParABS (partition system of ParA, ParB, and parS)-related bacterial chromosome segregation system. ParB (partition protein B) and its regulatory protein, ParA, act cooperatively through parS (partition S) DNA to facilitate chromosome segregation. ParB binds to chromosomal DNA at specific parS sites as well as the neighboring nonspecific DNA sites. Various ParB molecules can associate together and spread along the chromosomal DNA. ParB oligomer and parS DNA interact together to form a high-order nucleoprotein that is required for the loading of the structural maintenance of chromosomes proteins onto the chromosome for chromosomal DNA condensation. In this report, we characterized the binding of parS and Spo0J from Helicobacter pylori (HpSpo0J) and solved the crystal structure of the C-terminal domain truncated protein (Ct-HpSpo0J)-parS complex. Ct-HpSpo0J folds into an elongated structure that includes a flexible N-terminal domain for protein-protein interaction and a conserved DNA-binding domain for parS binding. Two Ct-HpSpo0J molecules bind with one parS. Ct-HpSpo0J interacts vertically and horizontally with its neighbors through the N-terminal domain to form an oligomer. These adjacent and transverse interactions are accomplished via a highly conserved arginine patch: RRLR. These interactions might be needed for molecular assembly of a high-order nucleoprotein complex and for ParB spreading. A structural model for ParB spreading and chromosomal DNA condensation that lead to chromosome segregation is proposed.


Assuntos
Proteínas de Bactérias/química , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Segregação de Cromossomos/genética , Segregação de Cromossomos/fisiologia , Cristalografia por Raios X , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Helicobacter pylori/genética , Helicobacter pylori/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Quaternária de Proteína , Espalhamento a Baixo Ângulo , Homologia de Sequência de Aminoácidos , Esporos Bacterianos/genética , Esporos Bacterianos/metabolismo , Difração de Raios X
8.
Proteins ; 82(6): 1079-85, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24108499

RESUMO

Glucoamylases are responsible for hydrolysis of starch and polysaccharides to yield ß-D-glucose. Rhizopus oryzae glucoamylase (RoGA) is composed of an N-terminal starch binding domain (SBD) and a C-terminal catalytic domain connected by an O-glycosylated linker. Two carbohydrate binding sites in RoSBD have been identified, site I is created by three highly conserved aromatic residues, Trp47, Tyr83, and Tyr94, and site II is built up by Tyr32 and Phe58. Here, the two crystal structures of RoSBD in complex with only α-(1,6)-linked isomaltotriose (RoSBD-isoG3) and isomaltotetraose (RoSBD-isoG4) have been determined at 1.2 and 1.3 Å, respectively. Interestingly, site II binding is observed in both complexes, while site I binding is only found in the RoSBD-isoG4 complex. Hence, site II acts as the recognition binding site for carbohydrate and site I accommodates site II to bind isoG4. Site I participates in sugar binding only when the number of glucosyl units of oligosaccharides is more than three. Taken together, two carbohydrate binding sites in RoSBD cooperate to reinforce binding mode of glucoamylase with polysaccharides as well as the starch.


Assuntos
Polissacarídeos Fúngicos/química , Proteínas Fúngicas/química , Glucana 1,4-alfa-Glucosidase/química , Oligossacarídeos/química , Rhizopus/enzimologia , Trissacarídeos/química , Configuração de Carboidratos , Sequência de Carboidratos , Cristalografia por Raios X , Ligação de Hidrogênio , Ligantes , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Estrutura Secundária de Proteína
9.
Acta Crystallogr D Biol Crystallogr ; 68(Pt 7): 773-83, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22751662

RESUMO

Uridylate kinase (UMPK; EC 2.7.4.22) transfers the γ-phosphate of ATP to UMP, forming UDP. It is allosterically regulated by GTP. Structures of Helicobacter pylori UMPK (HpUMPK) complexed with GTP (HpUMPK-GTP) and with UDP (HpUMPK-UDP) were determined at 1.8 and 2.5 Šresolution, respectively. As expected, HpUMPK-GTP forms a hexamer with six GTP molecules at its centre. Interactions between HpUMPK and GTP are made by the ß3 strand of the sheet, loop ß3α4 and the α4 helix. In HpUMPK-UDP, the hexameric symmetry typical of UMPKs is absent. Only four of the HpUMPK molecules bind UDP; the other two HpUMPK molecules are in the UDP-free state. The asymmetric hexamer of HpUMPK-UDP, which has an exposed dimer interface, may assist in UDP release. Furthermore, the flexibility of the α2 helix, which interacts with UDP, is found to increase when UDP is absent in HpUMPK-UDP. In HpUMPK-GTP, the α2 helix is too flexible to be observed. This suggests that GTP binding may affect the conformation of the α2 helix, thereby promoting UDP release.


Assuntos
Helicobacter pylori/enzimologia , Núcleosídeo-Fosfato Quinase/química , Núcleosídeo-Fosfato Quinase/metabolismo , Difosfato de Uridina/metabolismo , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Guanosina Trifosfato/metabolismo , Helicobacter pylori/química , Helicobacter pylori/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Multimerização Proteica , Estrutura Secundária de Proteína , Alinhamento de Sequência
10.
Proteins ; 71(1): 396-406, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17957775

RESUMO

Triosephosphate isomerase (TIM) catalyzes the interconversion between dihydroxyacetone phosphate and D-glyceraldehyde-3-phosphate in the glycolysis-gluconeogenesis metabolism pathway. The Helicobacter pylori TIM gene (HpTIM) was cloned, and HpTIM was expressed and purified. The enzymatic activity of HpTIM for the substrate GAP was determined (K(m) = 3.46 +/- 0.23 mM and k(cat) = 8.8 x 10(4) min(-1)). The crystal structure of HpTIM was determined by molecular replacement at 2.3 A resolution. The overall structure of HpTIM was (beta/alpha)beta(beta/alpha)(6), which resembles the common TIM barrel fold, (beta/alpha)(8); however, a helix is missing after the second beta-strand. The conformation of loop 6 and binding of phosphate ion suggest that the determined structure of HpTIM was in the "closed" state. A highly conserved Arg-Asp salt bridge in the "DX(D/N)G" motif of most TIMs is absent in HpTIM because the sequence of this motif is "(211)SVDG(214)." To determine the significance of this salt bridge to HpTIM, four mutants, including K183S, K183A, D213Q, and D213A, were constructed and characterized. The results suggest that this conserved salt bridge is not essential for the enzymatic activity of HpTIM; however, it might contribute to the conformational stability of HpTIM.


Assuntos
Helicobacter pylori/enzimologia , Triose-Fosfato Isomerase/química , Proteínas de Bactérias/química , Clonagem Molecular , Cristalografia por Raios X , Cinética , Mutação , Conformação Proteica , Triose-Fosfato Isomerase/genética
11.
Proteins ; 67(3): 743-54, 2007 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-17357156

RESUMO

Spermidine synthase (putrescine aminopropyltransferase, PAPT) catalyzes the transfer of the aminopropyl group from decarboxylated S-adenosylmethionine to putrescine during spermidine biosynthesis. Helicobacter pylori PAPT (HpPAPT) has a low sequence identity with other PAPTs and lacks the signature sequence found in other PAPTs. The crystal structure of HpPAPT, determined by multiwavelength anomalous dispersion, revealed an N-terminal beta-stranded domain and a C-terminal Rossmann-like domain. Structural comparison with other PAPTs showed that HpPAPT has a unique binding pocket between two domains, numerous non-conserved residues, a less acidic electrostatic surface potential, and a large buried space within the structure. HpPAPT lacks the gatekeeping loop that facilitates substrate binding in other PAPTs. PAPTs are essential for bacterial cell viability; thus, HpPAPT may be a potential antimicrobial drug target for H. pylori owing to its characteristic PAPT sequence and distinct conformation.


Assuntos
Proteínas de Bactérias/química , Helicobacter pylori/enzimologia , Espermidina Sintase/química , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Cromatografia em Gel , Cristalografia por Raios X/métodos , Helicobacter pylori/genética , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Homologia de Sequência de Aminoácidos , Espermidina Sintase/genética , Espermidina Sintase/metabolismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA