Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 85(8): 3955-60, 2013 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-23461652

RESUMO

Resistive random-access memory (ReRAM) has been of wide interest for its potential to replace flash memory in the next-generation nonvolatile memory roadmap. In this study, we have fabricated the Au/ZnO-nanowire/Au nanomemory device by electron beam lithography and, subsequently, utilized in situ transmission electron microscopy (TEM) to observe the atomic structure evolution from the initial state to the low-resistance state (LRS) in the ZnO nanowire. The element mapping of LRS showing that the nanowire was zinc dominant indicating that the oxygen vacancies were introduced after resistance switching. The results provided direct evidence, suggesting that the resistance change resulted from oxygen migration.

2.
Nanoscale ; 4(15): 4702-6, 2012 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-22744608

RESUMO

We report the melting behaviours of ZnO nanowire by heating ZnO-Al(2)O(3) core-shell heterostructures to form Al(2)O(3) nanotubes in an in situ ultrahigh vacuum transmission electron microscope (UHV-TEM). When the ZnO-Al(2)O(3) core-shell nanowire heterostructures were annealed at 600 °C under electron irradiation, the amorphous Al(2)O(3) shell became single crystalline and then the ZnO core melted. The average vanishing rate of the ZnO core was measured to be 4.2 nm s(-1). The thickness of the Al(2)O(3) nanotubes can be precisely controlled by the deposition process. Additionally, the inner geometry of nanotubes can be defined by the initial ZnO core. The result shows a promising method to obtain the biocompatible Al(2)O(3) nanotubes, which may be applied in drug delivery, biochemistry and resistive switching random access memory (ReRAM).

3.
Nanoscale ; 4(5): 1471-5, 2012 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-21979153

RESUMO

Well-aligned ZnO nanowires (NWs) were successfully synthesized on Si(100) by the process of carbothermal reduction and vapor-liquid-solid method. Scanning electron microscopy and transmission electron microscopy results confirmed that ZnO NWs were single crystalline wurtzite structures and grew along the [0001] direction. The influences of substrate temperature and total pressure on the growth were discussed. The well-aligned ZnO NWs show good field emission properties, and the emitter constructed of pencil-like ZnO NWs exhibited a low turn-on field (3.82 V µm(-1)) and a high field enhancement factor (ß = 2303). Finally, we demonstrated that the as-prepared ZnO NWs with small diameter on the substrate have good photocatalytic activity toward degradation of methylene blue. Using ZnO NWs with Au nanoparticles (NPs) would decrease the recombination rate of hole-electron pairs due to the great shift of the Fermi level to the conduction band. Hence, adding Au NPs was a promising method to enhance the photocatalytic performance of ZnO NWs. It is significant that photocatalyst fabricated by ZnO NWs can apply to the degradation of organic pollution, and solve the environmental issues.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA