Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 8(2)2018 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-29425191

RESUMO

Metal-enhanced luminescence of lanthanide complexes by noble metal nanoparticles has attracted much attention because of its high efficiency in improving the luminescent properties of lanthanide ions. Herein, nine kinds of europium and terbium complexes-RE(TPTZ)(ampca)3·3H2O, RE(TPTZ)(BA)3·3H2O, RE(phen)(ampca)3·3H2O, RE(phen)(PTA)1.5·3H2O (RE = Eu, Tb) and Eu(phen)(BA)3·3H2O (TPTZ = 2,4,6-tri(2-pyridyl)-s-triazine, ampca = 3-aminopyrazine-2-carboxylic acid, BA = benzoic acid, phen = 1,10-phenanthroline, PTA = phthalic acid)-have been synthesized. Meanwhile, seven kinds of core-shell Ag@SiO2 nanoparticles of two different core sizes (80-100 nm and 40-60 nm) and varied shell thicknesses (5, 12, 20, 30 and 40 nm) have been prepared. The combination of these nine types of lanthanide complexes and seven kinds of Ag@SiO2 nanoparticles provides an opportunity for a thorough investigation of the metal-enhanced luminescence effect. Luminescence spectra analysis showed that the luminescence enhancement factor not only depends on the size of the Ag@SiO2 nanoparticles, but also strongly relates to the composition of the lanthanide complexes. Terbium complexes typically possess higher enhancement factors than their corresponding europium complexes with the same ligands, which may result from better spectral overlap between the emission bands of Tb complexes and surface plasmon resonance (SPR) absorption bands of Ag@SiO2. For the complexes with the same lanthanide ion but varied ligands, the complexes with high enhancement factors are typically those with excitation wavelengths located nearby the SPR absorption bands of Ag@SiO2 nanoparticles. These findings suggest a combinatorial chemistry strategy is necessary to obtain an optimal metal-enhanced luminescence effect for lanthanide complexes.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 151: 716-22, 2015 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-26172458

RESUMO

Three kinds of core-shell Ag@SiO2 nanoparticles with shell thickness of around 10, 15, and 25 nm, respectively, have been prepared by modified Stöber method and used for fluorescence enhancement. Six kinds of europium complexes with halobenzoic acid have been synthesized. Elemental analysis and lanthanide coordination titration show that the complexes have the compositions of Eu(p-XBA)3·H2O and Eu(o-XBA)3·2H2O (X=F, Cl, Br). The fluorescence spectra investigation indicates that the introduction of Ag@SiO2 nanoparticles into the europium complexes' solution can significantly enhance the fluorescence intensities of the complexes. The sequence of enhancement factors for halobenzoic acid complexes with different halogen atoms is F

3.
Luminescence ; 30(8): 1360-6, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25829339

RESUMO

Using 2,4,6-tris-(2-pyridyl)-s-triazine (TPTZ) as a neutral ligand, and p-hydroxybenzoic acid, terephthalic acid and nitrate as anion ligands, five novel europium complexes have been synthesized. These complexes were characterized using elemental analysis, rare earth coordination titrations, UV/vis absorption spectroscopy and infrared spectroscopy. Luminescence spectra, luminescence lifetime and quantum efficiency were investigated and the mechanism discussed in depth. The results show that the complexes have excellent emission intensities, long emission lifetimes and high quantum efficiencies. The superior luminescent properties of the complexes may be because the triplet energy level of the ligands matches well with the lowest excitation state energy level of Eu(3+). Moreover, changing the ratio of the ligands and metal ions leads to different luminescent properties. Among the complexes, Eu2(TPTZ)2(C8H4O4)(NO3)4(C2H5OH)·H2O shows the strongest luminescence intensity, longest emission lifetime and highest quantum efficiency.


Assuntos
Európio/química , Substâncias Luminescentes/química , Triazinas/química , Luminescência , Substâncias Luminescentes/síntese química
4.
Luminescence ; 30(6): 835-41, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25640149

RESUMO

Two complexes of Tb(3+), Gd(3+) /Tb(3+) and one heteronuclear crystal Gd(3+)/Tb(3+) with phenoxyacetic acid (HPOA) and 2,4,6-tris-(2-pyridyl)-s-triazine (TPTZ) have been synthesized. Elemental analysis, rare earth coordination titration, inductively coupled plasma atomic emission spectrometry (ICP-AES) and thermogravimetric analysis-differential scanning calorimetry (TG-DSC) analysis show that the two complexes are Tb2 (POA)6 (TPTZ)2 · 6H2O and TbGd(POA)6 (TPTZ)2 · 6H2O, respectively. The crystal structure of TbGd(POA)6 (TPTZ)2 · 2CH3OH was determined using single-crystal X-ray diffraction. The monocrystal belongs to the triclinic system with the P-1 space group. In particular, each metal ion is coordinately bonded to three nitrogen atoms of one TPTZ and seven oxygen atoms of three phenoxyacetic ions. Furthermore, there exist two coordinate forms between C6H5OCH2COO(-) and the metal ions in the crystal. One is a chelating bidentate, the other is chelating and bridge coordinating. Fluorescence determination shows that the two complexes possess strong fluorescence emissions. Furthermore, the fluorescence intensity of the Gd(3+)/Tb(3+) complex is much stronger than that of the undoped complex, which may result from a decrease in the concentration quench of Tb(3+) ions, and intramolecular energy transfer from the ligands coordinated with Gd(3+) ions to Tb(3+) ions.


Assuntos
Acetatos/química , Substâncias Luminescentes/química , Térbio/química , Técnicas de Química Sintética , Cristalografia por Raios X , Fluorescência , Gadolínio/química , Espectrometria de Fluorescência , Espectrofotometria Infravermelho , Espectrofotometria Ultravioleta , Triazinas/química
5.
Luminescence ; 30(2): 131-6, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24891100

RESUMO

Twelve lanthanide complexes with cinnamate (cin(-) ) and 1,10-phenanthroline (phen) were synthesized and characterized. Their compositions were assumed to be RE(cin)3 phen (RE(3+) = La(3+) , Pr(3+) , Nd(3+) , Sm(3+) , Eu(3+) , Gd(3+) , Tb(3+) , Dy(3+) , Ho(3+) , Tm(3+) , Yb(3+) , Lu(3+) ). The interaction mode between the complexes and DNA was investigated by fluorescence quenching experiment. The results indicated the complexes could bind to DNA and the main binding mode is intercalative binding. The fluorescence quenching constants of the complexes increased from La(cin)3 phen to Lu(cin)3 phen. Additionally, the antibacterial activity testing showed that the complexes exhibited excellent antibacterial ability against Escherichia coli, and the changes of antibacterial ability are in agreement with that of the fluorescence quenching constants.


Assuntos
Antibacterianos/farmacologia , Cinamatos/farmacologia , DNA/química , Escherichia coli/efeitos dos fármacos , Fluorescência , Elementos da Série dos Lantanídeos/farmacologia , Compostos Organometálicos/farmacologia , Fenantrolinas/farmacologia , Animais , Antibacterianos/síntese química , Antibacterianos/química , Bovinos , Cinamatos/química , Relação Dose-Resposta a Droga , Elementos da Série dos Lantanídeos/química , Testes de Sensibilidade Microbiana , Compostos Organometálicos/síntese química , Compostos Organometálicos/química , Fenantrolinas/química , Espectrometria de Fluorescência , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA