Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; : e2403929, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744294

RESUMO

2D polarization materials have emerged as promising candidates for meeting the demands of device miniaturization, attributed to their unique electronic configurations and transport characteristics. Although the existing inherent and sliding mechanisms are increasingly investigated in recent years, strategies for inducing 2D polarization with innovative mechanisms remain rare. This study introduces a novel 2D Janus state by modulating the puckered structure. Combining scanning probe microscopy, transmission electron microscopy, and density functional theory calculations, this work realizes force-triggered out-of-plane and in-plane dipoles with distorted smaller warping in GeSe. The Janus state is preserved after removing the external mechanical perturbation, which could be switched by modulating the sliding direction. This work offers a versatile method to break the space inversion symmetry in a 2D system to trigger polarization in the atomic scale, which may open an innovative insight into configuring novel 2D polarization materials.

2.
J Viral Hepat ; 29(9): 765-776, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35718996

RESUMO

Combination therapy with pegylated interferon (PEG-IFN) and nucleos(t)ide analogues (NAs) can enhance hepatitis B surface antigen (HBsAg) clearance. However, the specific treatment strategy and the patients who would benefit the most are unclear. Therefore, we assessed the HBsAg loss rate of add-on PEG-IFN and explored the factors associated with HBsAg loss in chronic hepatitis B (CHB) patients. This was a real-world cohort study of adults with CHB. Hepatitis B e antigen (HBeAg)-negative NAs-treated patients with baseline HBsAg ≤1500 IU/ml and HBV DNA < the lower limit of detection, or 100 IU/ml, received 48 weeks of add-on PEG-IFN. The primary outcome of the study was the rate of HBsAg loss at 48 weeks of combination treatment. Using multivariable logistic regression analysis, we determined factors associated with HBsAg loss. HBsAg loss in 2579 patients (mean age: 41.2 years; 80.9% male) was 36.7% (947 patients) at 48 weeks. HBsAg loss was highest in patients from south-central and southwestern China (40.0%). Factors independently associated with HBsAg loss included: increasing age (odds ratio = 0.961); being male (0.543); baseline HBsAg level (0.216); HBsAg decrease at 12 weeks (between 0.5 and 1.0 log10 IU/ml [2.405] and >1.0 log10 IU/ml [7.370]); alanine aminotransferase (ALT) increase at 12 weeks (1.365); haemoglobin (HGB) decrease at 12 weeks (1.558). There was no difference in the primary outcomes associated with the combination regimen. In conclusion, HBsAg loss by combination therapy was higher in patients from southern China than those from the north. An increased chance of HBsAg loss was associated with baseline characteristics and dynamic changes in clinical indicators.


Assuntos
Antígenos de Superfície da Hepatite B , Hepatite B Crônica , Adulto , Antivirais/uso terapêutico , Estudos de Coortes , DNA Viral , Feminino , Antígenos E da Hepatite B , Vírus da Hepatite B/genética , Hepatite B Crônica/tratamento farmacológico , Humanos , Interferon-alfa/uso terapêutico , Masculino , Polietilenoglicóis/uso terapêutico , Resultado do Tratamento
3.
Nano Lett ; 22(12): 4792-4799, 2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35639474

RESUMO

HfO2-based films with high compatibility with Si and complementary metal-oxide semiconductors (CMOS) have been widely explored in recent years. In addition to ferroelectricity and antiferroelectricity, flexoelectricity, the coupling between polarization and a strain gradient, is rarely reported in HfO2-based films. Here, we demonstrate that the mechanically written out-of-plane domains are obtained in 10 nm Hf0.5Zr0.5O2 (HZO) ferroelectric film at room temperature by generating the stress gradient via the tip of an atomic force microscope. The results of scanning Kelvin force microscopy (SKPM) exclude the possibility of flexoelectric-like mechanisms and prove that charge injection could be avoided by mechanical writing and thus reveal the true polarization state, promoting wider flexoelectric applications and ultrahigh-density storage of HZO thin films.

4.
Nanotechnology ; 30(46): 464001, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31422955

RESUMO

Memristors have been intensively studied in recent years as promising building blocks for next-generation nonvolatile memory, artificial neural networks and brain-inspired computing systems. However, most memristors cannot simultaneously function in extremely low and high temperatures, limiting their use for many harsh environment applications. Here, we demonstrate that the memristors based on high-Curie temperature ferroelectrics can resolve these issues. Excellent synaptic learning and memory functions can be achieved in BiFeO3 (BFO)-based ferroelectric memristors in an ultra-wide temperature range. Correlation between electronic transport and ferroelectric properties is established by the coincidence of resistance and ferroelectricity switch and the direct visualization of local current and domain distributions. The interfacial barrier modification by the reversal of ferroelectric polarization leads to a robust resistance switching behavior. Various synaptic functions including long-term potentiation/depression, consecutive potentiation/depression and spike-timing dependent plasticity have been realized in the BFO ferroelectric memristors over an extremely wide temperature range of -170 °C âˆ¼ 300 °C, which even can be extended to 500 °C due to the robust ferroelectricity of BFO at high temperatures. Our findings illustrate that the BFO ferroelectric memristors are promising candidates for ultra-wide temperature electronic synapse in extreme or harsh environments.

5.
J Phys Condens Matter ; 31(20): 205501, 2019 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-30708355

RESUMO

The ferromagnetism of the two dimensional (2D) Cr2Ge2Te6 atomic layers with the perpendicular magnetic anisotropy and the Curie temperature 30-50 K has recently been experimentally confirmed. By performing the density-functional theory calculations, we demonstrate that the magnetic properties of bilayer Cr2Ge2Te6 can be flexibly tailored, due to the effective band structure tuning by the external electric field. The electric field induces the semiconductor-metal transition and redistributes charge and spin between the two layers. Furthermore, the magnetic anisotropy energy of the bilayer Cr2Ge2Te6 can be obviously enhanced by the electric field, which is helpful to stabilize the long-range ferromagnetic order. Our study about the electric manipulation of magnetism based on the band structure engineering generally exists in 2D magnetic systems and will be of great significance in low-dimensional all-electric spintronics.

6.
Nanoscale ; 11(18): 8744-8751, 2019 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-30806411

RESUMO

Memristors have been extensively studied for synaptic simulation and neuromorphic computation. Instead of focusing on implementing specific synaptic learning rules by carefully engineering external programming parameters, researchers recently have paid more attention to taking advantage of the second-order memristor that is more analogous to biologic synapses and modulated not only by external inputs but also by internal mechanisms. However, experimental evidence is still scarce. Here, we explore a BiMnO3 memristor by applying simple spike forms. The filament evolution dynamics, including processes of forming and spontaneous decay, were directly observed by the conductive atomic force microscopy (c-AFM) technique. We propose that the unique conductance state of the BMO memristor is regulated by the oxygen vacancy (VO) dynamic process. We believe this primary result is helpful to improve understanding of the internal mechanisms of the second-order oxide memristor, which exhibits promising application in building selectors, memories and neuromorphic-computing systems.

7.
Proc Natl Acad Sci U S A ; 115(34): 8511-8516, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-30076226

RESUMO

Engineering the electronic band structure of material systems enables the unprecedented exploration of new physical properties that are absent in natural or as-synthetic materials. Half metallicity, an intriguing physical property arising from the metallic nature of electrons with singular spin polarization and insulating for oppositely polarized electrons, holds a great potential for a 100% spin-polarized current for high-efficiency spintronics. Conventionally synthesized thin films hardly sustain half metallicity inherited from their 3D counterparts. A fundamental challenge, in systems of reduced dimensions, is the almost inevitable spin-mixed edge or surface states in proximity to the Fermi level. Here, we predict electric field-induced half metallicity in bilayer A-type antiferromagnetic van der Waals crystals (i.e., intralayer ferromagnetism and interlayer antiferromagnetism), by employing density functional theory calculations on vanadium diselenide. Electric fields lift energy levels of the constituent layers in opposite directions, leading to the gradual closure of the gap of singular spin-polarized states and the opening of the gap of the others. We show that a vertical electrical field is a generic and effective way to achieve half metallicity in A-type antiferromagnetic bilayers and realize the spin field effect transistor. The electric field-induced half metallicity represents an appealing route to realize 2D half metals and opens opportunities for nanoscale highly efficient antiferromagnetic spintronics for information processing and storage.

8.
Nanoscale ; 9(45): 17957-17962, 2017 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-29125168

RESUMO

GeTe is a prototypical compound of a new class of multifunctional materials, i.e., ferroelectric Rashba semiconductors (FRS). In the present work, by combining the first-principles calculations and Rashba model analysis, we reexamine Rashba spin-orbit coupling (SOC) in a GeTe(111) crystal and clarify its linear Rashba SOC strength. We further investigate Rashba SOC at the interface of a GeTe(111)/InP(111) superlattice and demonstrate the ferroelectric manipulation of Rashba SOC in detail. A large modulation of Rashba SOC is obtained, and surprisingly, we find that Rashba SOC does not monotonically increase with the increase of ferroelectric displacement, due to the parabola opening reversal of Rashba splitting bands. In addition, a reversal of the spin texture is realized by tuning the ferroelectric polarization. Our investigation provides a deep insight into the ferroelectric control of Rashba SOC, which is of great importance in FRS spin field effect transistors.

9.
Sci Rep ; 5: 18297, 2015 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-26670138

RESUMO

Resistive switching through electroresistance (ER) effect in metal-ferroelectric-metal (MFM) capacitors has attracted increasing interest due to its potential applications as memories and logic devices. However, the detailed electronic mechanisms resulting in large ER when polarisation switching occurs in the ferroelectric barrier are still not well understood. Here, ER effect up to 1000% at room temperature is demonstrated in C-MOS compatible MFM nanocapacitors with a 8.8 nm-thick poly(vinylidene fluoride) (PVDF) homopolymer ferroelectric, which is very promising for silicon industry integration. Most remarkably, using theory developed for metal-semiconductor rectifying contacts, we derive an analytical expression for the variation of interfacial barrier heights due to space-charge effect that can interpret the observed ER response. We extend this space-charge model, related to the release of trapped charges by defects, to MFM structures made of ferroelectric oxides. This space-charge model provides a simple and straightforward tool to understand recent unusual reports. Finally, this work suggests that defect-engineering could be an original and efficient route for tuning the space-charge effect and thus the ER performances in future electronic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA