Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 13(2)2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38397844

RESUMO

This study aimed to evaluate the effects of a complex comprising formic acid, benzoic acid, and essential oils (AO3) on the growth performance of weaned piglets and explore the underlying mechanism. Dietary AO3 supplementation significantly enhanced the average daily gain (ADG) and average daily feed intake (ADFI), while decreasing the feed conversion rate (FCR) and diarrhea rate (p < 0.05). Additionally, AO3 addition altered the fecal microflora composition with increased abundance of f_Prevotellaceae. LPS challenges were further conducted to investigate the detailed mechanism underlying the benefits of AO3 supplementation. The piglets fed with AO3 exhibited a significant increase in villus height and decrease in crypt depth within the jejunum, along with upregulation of ZO-1, occludin, and claudin-1 (p < 0.05) compared with those piglets subjected to LPS. Furthermore, AO3 supplementation significantly ameliorated redox disturbances (T-AOC, SOD, and GSH) and inflammation (TNF-α, IL-1ß, IL-6, and IL-12) in both the serum and jejunum of piglets induced by LPS, accompanied by suppressed activation of the MAPK signaling pathway (ERK, JNK, P38) and NF-κB. The LPS challenge downregulated the activation of the AMPK signaling pathway, mRNA levels of electron transport chain complexes, and key enzymes involved in ATP synthesis, which were significantly restored by the AO3 supplementation. Additionally, AO3 supplementation restored the reduced transport of amino acids, glucose, and fatty acids induced by LPS back to the levels observed in the control group. In conclusion, dietary AO3 supplementation positively affected growth performance and gut microbiota composition, also enhancing intestinal barrier integrity, nutrient uptake, and energy metabolism, as well as alleviating oxidative stress and inflammation under LPS stimulation.

2.
J Anim Sci Biotechnol ; 15(1): 4, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38238856

RESUMO

BACKGROUND: The benefits of combining benzoic acid and essential oils (BAO) to mitigate intestinal impairment during the weaning process have been well established, while the detailed underlying mechanism has not been fully elucidated. Previous research has primarily focused on the reparative effects of BAO on intestinal injury, while neglecting its potential in enhancing intestinal stress resistance. METHODS: In this study, we investigated the pre-protective effect of BAO against LPS-induced stress using a modified experimental procedure. Piglets were pre-supplemented with BAO for 14 d, followed by a challenge with LPS or saline to collect blood and intestinal samples. RESULTS: Our findings demonstrated that BAO supplementation led to significant improvements in piglets' final weight, average daily gain, and feed intake/body gain ratio. Additionally, BAO supplementation positively influenced the composition of intestinal microbiota, increasing beneficial Actinobacteriota and Alloprevotella while reducing harmful Desulfobacterota, Prevotella and Oscillospira. Furthermore, BAO supplementation effectively mitigated oxidative disturbances and inflammatory responses induced by acute LPS challenge. This was evidenced by elevated levels of T-AOC, SOD, and GSH, as well as decreased levels of MDA, TNF-α, and IL-6 in the plasma. Moreover, piglets subjected to LPS challenge and pre-supplemented with BAO exhibited significant improvements in intestinal morphological structure and enhanced integrity, as indicated by restored expression levels of Occludin and Claudin-1 compared to the non-supplemented counterparts. Further analysis revealed that BAO supplementation enhanced the jejunal antioxidative capacity by increasing GSH-Px levels and decreasing MDA levels under the LPS challenge and stimulated the activation of the Nrf2 signaling pathway. Additionally, the reduction of TLR4/NF-κB/MAPK signaling pathways activation and proinflammatory factor were also observed in the jejunal of those piglets fed with BAO. CONCLUSIONS: In summary, our study demonstrates that pre-supplementation of BAO enhances the anti-stress capacity of weaned piglets by improving intestinal microbiota composition, reinforcing the intestinal barrier, and enhancing antioxidative and anti-inflammatory capabilities. These effects are closely associated with the activation of Nrf2 and TLR4/NF-κB/MAPK signaling pathways.

3.
Poult Sci ; 102(4): 102490, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36736140

RESUMO

The objective of this study was to investigate whether dietary supplementation with benzoic acid, Enterococcus faecium, and essential oil complex (BEC) could help laying hens recover from coccidia and Clostridium perfringens type A challenge. A total of 60 (35-wk-old) Lohmann-laying hens were randomly assigned to 3 experimental groups (10 replicates with 2 hens per replicate): I) control group (CON), II) challenge group (CC), and III) BEC group (2,000 mg/kg BEC). The total experimental period was 8 wk. The results shown that the challenge layers had lower egg-laying rate and average daily feed intake (ADFI) (P < 0.05), and addition of BEC after challenge increased egg-laying rate (P < 0.05). The content of propionic acid (PA) and butyric acid (BA) in short-chain fatty acid (SCFA) was significantly decreased by challenge (P < 0.05). CC and BEC groups had lower villus height to crypt depth ratio (V/C) and higher pathological scores in duodenum (P < 0.05), whereas the BEC group had lower pathological scores in jejunum when compared with the CC group (P < 0.05). The challenge increased the concentration of proinflammatory cytokines (IL-1ß and IL-6) (P < 0.05). An increase in the abundance of Bacteroidoes (genus), Bacteroidaceae (family), Bacteroidoes sp. Marseille P3166 (species), Bacteroidoes caecicola (species) was observed in the CC group, whereas the BEC group had higher abundance of Bacteroides caecigallinarum (species). The genera Faecalibacterium and Asterolplasma were positively correlated with egg-laying rate (r = 0.57, 0.60; P < 0.01); and the genera Bacteroides and Romboutsia were negatively correlated with egg-laying rate (r = -0.58, -0.74; P < 0.01). The genera Bacteroides, Lactobacillus, and Rombutzia were positively correlated with jejunal mucosa proinflammatory factor IL-1ß level (r = 0.61, 0.60, 0.59; P < 0.01), which were negatively correlated with genera Rikenbacteriaceae RC9, Faecalibacterium, and Olsenlla (r = -0.56, -0.57, -0.61; P < 0.01). There genera UCG.005 was positively correlated with proinflammatory factor IL-6 level in jejunal mucosa (r = 0.58; P < 0.01), which was negatively correlated with Rikenbacteriaceae RC9 (r = -0.62; P < 0.01). The experiment results revealed that the addition of BEC to the diet restored the production performance of the laying hens. In addition, supplementation of 2,000 mg/kg BEC modulated gut health by reducing gut damage scores and modulating microbial composition, thereby promoting recovery of laying hens after coccidia and Clostridium perfringens challenge.


Assuntos
Coccídios , Enterococcus faecium , Microbioma Gastrointestinal , Óleos Voláteis , Animais , Feminino , Suplementos Nutricionais/análise , Clostridium perfringens , Galinhas/microbiologia , Óleos Voláteis/farmacologia , Ácido Benzoico/farmacologia , Interleucina-6 , Dieta/veterinária , Ração Animal/análise
4.
Poult Sci ; 101(4): 101720, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35231770

RESUMO

The purpose of this experiment is to explore the effects of dietary supplementation of benzoic acid, Enterococcus faecium, and essential oil complex (BEC) on coccidia and Clostridium perfringens challenge in laying hens. A total of 80 Lohmann gray laying hens (35 wk old) were allocated to 4 treatments in a 2 × 2 factorial arrangement with the main effects of Clostridium perfringens type A (CP) and coccidia challenge (with or without challenge) and 2 BEC levels (0 and 1,000 mg/kg). The total experimental period was 6 wk. The results showed that: the challenge group significantly decreased the laying rate and average daily feed intake (ADFI) of laying hens (PChallenge < 0.01). The BEC + challenge group significantly increased the laying rate and decreased the feed conversion ratio (FCR) of laying hens (PBEC < 0.05). The challenge significantly decreased the thickness, strength, and relative weight of eggshell (PChallenge < 0.05). The BCE + challenge group significantly increased the relative weight and strength of the eggshell (PBEC < 0.05). The challenge significantly increased the crypt depth of the duodenum, jejunum and ileum, and decreased the villus-to-crypt ratio (V/C) (PChallenge < 0.01). The BEC + challenge group decreased the crypt depth of the duodenum and jejunum, and increased the V/C of the duodenum (PBEC < 0.01). The pathological scores of duodenum and jejunum of the challenge group were significantly higher than other groups (PChallenge < 0.01), while the BEC + challenge group had lower pathological scores of jejunum (PBEC < 0.01). The challenge significantly decreased the mRNA expression of Occludin, Mucin-2, Zonula occluden-1 (ZO-1) (Pchallenge < 0.05); whereas the BEC group significantly increased the expression of Occludin, Mucin-2, and Claudin-1 mRNA (PBEC < 0.05). The challenge significantly increased the level of interleukin 1ß (IL-1ß) in the jejunum (PChallenge < 0.05). Taken together, adding BEC to the diet can improved production performance and egg quality of layers, by protecting intestinal health against Clostridium perfringens type A (CP) and coccidia challenge.


Assuntos
Coccídios , Enterococcus faecium , Óleos Voláteis , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Animais , Ácido Benzoico , Galinhas , Clostridium perfringens , Dieta/veterinária , Suplementos Nutricionais/análise , Feminino , Mucina-2 , Ocludina , Óleos Voláteis/farmacologia , Óvulo , RNA Mensageiro
5.
Anim Sci J ; 87(7): 911-20, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26597995

RESUMO

Eighteen Duroc × Landrace × Yorkshire barrows, with an average initial body weight (BW) of 75.4 ± 2.0 kg, were randomly allotted to one of three diets with six replicates per treatment for 25 days. The diets comprised a normal protein diet (NP, 14.5% crude protein), a low crude protein diet supplemented with 0.27% alanine (LP + Ala, 10.0% crude protein), or a low crude protein diet supplemented with 0.40% leucine (LP + Leu, 10.0% crude protein). The whole-body protein synthesis rate, whole-body protein breakdown rate and protein deposition rate in pigs fed the LP + Leu diet were similar to the NP diet (P > 0.05), and both were significantly higher than pigs fed the LP + Ala diet (P < 0.05). The Longissimus muscle area (LMA) of pigs fed the LP + Leu diet was larger than those fed the LP + Ala diet (P = 0.05). In addition, drip loss and intramuscular fat of pigs fed the LP + Ala diet were higher than that of the others (P < 0.05). In conclusion, supplementation of leucine in low protein diet could stimulate protein deposition and improve the meat quality of finishing pigs more than an alanine-supplemented one.


Assuntos
Ração Animal , Fenômenos Fisiológicos da Nutrição Animal/fisiologia , Dieta/veterinária , Proteínas Alimentares/administração & dosagem , Suplementos Nutricionais , Qualidade dos Alimentos , Leucina/administração & dosagem , Carne , Nitrogênio/metabolismo , Proteínas/metabolismo , Suínos/crescimento & desenvolvimento , Suínos/metabolismo , Tecido Adiposo/metabolismo , Animais , Masculino , Carne/análise , Músculo Esquelético/metabolismo
6.
Asian-Australas J Anim Sci ; 26(8): 1172-80, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25049898

RESUMO

Two experiments were conducted to determine the standardized ileal digestible (SID) lysine (Lys) requirement and the ideal SID threonine (Thr) to Lys ratio for finishing barrows. In Exp. 1, 120 barrows with an average body weight of 72.8±3.6 kg were allotted to one of six dietary treatments in a randomized complete block design conducted for 35 d. Each diet was fed to five pens of pigs containing four barrows. A normal crude protein (CP) diet providing 15.3% CP and 0.71% SID Lys and five low CP diets providing 12% CP with SID Lys concentrations of 0.51, 0.61, 0.71, 0.81 and 0.91% were formulated. Increasing the SID Lys content of the diet resulted in an increase in weight gain (linear effect p = 0.04 and quadratic effect p = 0.08) and an improvement in feed conversion ratio (FCR) (linear effect p = 0.02 and quadratic effect p = 0.02). For weight gain and FCR, the estimated SID Lys requirement of finishing barrows were 0.71 and 0.71% (linear broken-line analysis), 0.79 and 0.78% (quadratic analysis), respectively. Exp. 2 was a 26 d dose-response study using SID Thr to Lys ratios of 0.56, 0.61, 0.67, 0.72 and 0.77. A total of 138 barrows weighing 72.5±4.4 kg were randomly allotted to receive one of the five diets. All diets were formulated to contain 0.61% SID Lys (10.5% CP), which is slightly lower than the pig's requirement. Weight gain was quadratically (p = 0.03) affected by SID Thr to Lys ratio while FCR was linearly improved (p = 0.02). The SID Thr to Lys ratios for maximal weight gain and minimal FCR and serum urea nitrogen (SUN) were 0.67, 0.71 and 0.64 using a linear broken-line model and 0.68, 0.78 and 0.70 using a quadratic model, respectively. Based on the estimates obtained from the broken-line and quadratic analysis, we concluded that the dietary SID Lys requirement for both maximum weight gain and minimum FCR was 0.75%, and an optimum SID Thr to Lys ratio was 0.68 to maximize weight gain, 0.75 to optimize FCR and 0.67 to minimize SUN for finishing barrows.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA