Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-36231517

RESUMO

The National Key Ecological Functional Areas (NKEFAs) of China rely on the main functional area planning, with the core goal of enhancing the supply of ecological products. Carbon sink is an important ecological product, and it is necessary to understand whether the establishment of NKEFAs has enhanced vegetation carbon sink (CS). Considering the establishment of NKEFAs as a quasi-natural experiment, based on the panel data of prefecture-level cities in China from 2001 to 2019, a time-varying difference-in-differences (DID) model is used to systematically examine the impact of NKEFAs on CS. The study found that the establishment of NKEFAs has significantly enhanced the CS, and compared to the non-NKEFAs, NKEFAs has increased CS in the covered areas by an average treatment effect (ATE) of 2.1625. The establishment of NKEFAs can enhance CS through the optimization of territory spatial structure, the upgrading of industrial structure and the inter-industrial mobility of labor. The enhancement roles of NKEFAs on CS are heterogeneous across different functional area types, geospatial locations, and quantile levels, with higher enhancement of CS at windbreak-sand fixation type, northwestern region and high quantiles, respectively. In addition, NKEFAs not only have a significant positive ecological spillover effect, but also balanced with local economic growth, they achieve the goals of "lucid waters and lush mountains are invaluable assets".


Assuntos
Sequestro de Carbono , Ecossistema , Carbono , China , Cidades , Areia
2.
Artigo em Inglês | MEDLINE | ID: mdl-35805498

RESUMO

The Sloping Land Conversion Program (SLCP) is the largest ecological restoration program in the world. Evaluating the ecological effects of the SLCP not only provides a scientific basis for China to improve the SLCP but also provides a reference for other countries in the world to evaluate the ecological effects of ecological restoration programs being implemented or to be implemented. To this end, we took the Loess Plateau, the core area for the implementation of the SLCP, as an example and, based on multi-source remote sensing data and GIS technology, we conducted a comprehensive evaluation of the ecological effects of the implementation of the SLCP on the Loess Plateau. The results showed that, first, from 2000 to 2018, a total of 12,372.05 km2 of cultivated land was converted into forest land and grassland on the Loess Plateau, and this contributed to an increase in vegetation cover from 45.09% in 2000 to 64.15% in 2018, and a decrease in the soil erosion modulus from 26.41 t·hm-2·yr-1 in 2000 to 17.92 t·hm-2·yr-1 in 2018. Second, the 6-25° slope range is the core area of the Loess Plateau for implementation of the SLCP. In this range, the area of cultivated land converted into forest land and grassland accounts for 60.16% of the total area of transferred cultivated land. As a result, the 6-25° slope range has become the most significant area for improving vegetation cover and reducing the soil erosion intensity, and it is mainly concentrated in the southwestern, central and central-eastern hilly and gully areas of the Loess Plateau. Third, from 2000 to 2018, the climate of the Loess Plateau tended to be warm and humid and was conducive to the implementation of the SLCP. Among these factors, precipitation is the dominant factor in determining the spatial distribution of vegetation on the Loess Plateau, and the increase in precipitation is also the main reason for the promotion of vegetation growth. Fourthly, from 2000 to 2018, the ecological environment of the Loess Plateau was significantly improved as a result of the combined effects of the implementation of the SLCP and climate warming and humidification, but the primary reason is still the implementation of the SLCP.


Assuntos
Conservação dos Recursos Naturais , Solo , China , Clima , Conservação dos Recursos Naturais/métodos , Ecossistema , Florestas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA