Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(7)2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38612111

RESUMO

Upcycling Cr-containing sulfate waste into catalysts for CO2 hydrogenation reaction benefits both pollution mitigation and economic sustainability. In this study, FeCrO3/Fe2O3 catalysts were successfully prepared by a simple hydrothermal method using Cr-containing sodium sulfate (Cr-SS) as a Cr source for efficient conversion and stable treatment of Cr. The removal rate of Cr in Cr-SS can reach 99.9% at the optimized hydrothermal conditions. When the synthesized catalysts were activated and used for the CO2 hydrogenation reaction, a 50% increase in CO2 conversion was achieved compared with the catalyst prepared by impregnation with a comparable amount of Cr. According to the extraction and risk assessment code (RAC) of the Reference Office of the European Community Bureau (BCR), the synthesized FeCrO3/Fe2O3 is risk-free. This work not only realizes the detoxification of the Cr-SS but transfers Cr into stable FeCrO3 for application in a catalytic field, which provides a strategy for the harmless disposal and resource utilization of Cr-containing hazardous waste.

2.
Chemosphere ; 351: 141185, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38215831

RESUMO

Chromium-containing wastewater causes serious environmental pollution due to the harmfulness of Cr(VI). The ferrite process is typically used to treat chromium-containing wastewater and recycle the valuable chromium metal. However, the current ferrite process is unable to fully transform Cr(VI) into chromium ferrite under mild reaction conditions. This paper proposes a novel ferrite process to treat chromium-containing wastewater and recover valuable chromium metal. The process combines FeSO4 reduction and hydrothermal treatment to remove Cr(VI) and form chromium ferrite composites. The Cr(VI) concentration in the wastewater was reduced from 1040 mg L-1 to 0.035 mg L-1, and the Cr(VI) leaching toxicity of the precipitate was 0.21 mg L-1 under optimal hydrothermal conditions. The precipitate consisted of micron-sized ferrochromium spinel multiphase with polyhedral structure. The mechanism of Cr(VI) removal involved three steps: 1) partial oxidation of FeSO4 to Fe(III) hydroxide and oxy-hydroxide; 2) reduction of Cr(VI) by FeSO4 to Cr(III) and Fe(III) precipitates; 3) transformation and growth of the precipitates into chromium ferrite composites. This process meets the release standards of industrial wastewater and hazardous waste and can improve the efficiency of the ferrite process for toxic heavy metal removal.


Assuntos
Óxido de Alumínio , Ligas de Cromo , Óxido de Magnésio , Águas Residuárias , Poluentes Químicos da Água , Compostos Férricos/química , Cromo/química , Hidróxidos , Poluentes Químicos da Água/análise
3.
Environ Res ; 216(Pt 2): 114567, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36244441

RESUMO

The recovery of heavy metals from electroplating sludge is important for alleviating heavy metal pollution and recycling metal resources. However, the selective recovery of metal resources is limited by the complexity of electroplating sludge. Herein, CuFe bimetallic Fenton-like catalysts were successfully prepared from electroplating sludge by a facile room-temperature ultrasonic-assisted co-precipitation method. The prepared CuFe-S mainly consisted of nanorods with diameters of 20-30 nm and lengths of 100-200 nm and a small number of irregular particles. Subsequently, we performed tetracycline (TC) degradation experiments, and the results showed that the product CuFe-S had very good performance over a wide pH range (2-11). At an initial pH = 2, CuFe-S could degrade 91.9% of 50 mg L-1 TC aqueous solution within 30 min, which is better than that of a single metal catalyst. Free radical scavenging experiments and electron paramagnetic resonance (EPR) tests revealed that ·OH was the main active species for the degradation of TC by CuFe-S. In conclusion, a CuFe bimetallic Fenton-like catalyst was developed for the catalytic degradation of antibiotics, which provides a novel technical route for the resource utilization of electroplating sludge and shows an important practical application prospect.


Assuntos
Metais Pesados , Esgotos , Galvanoplastia , Cobre , Catálise , Antibacterianos , Peróxido de Hidrogênio
4.
J Hazard Mater ; 440: 129754, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35985215

RESUMO

Chromium ore processing residue (COPR) is a hazardous waste generated during the production of chromate. Currently, approximately 10% of Cr2O3 cannot be extracted after chromite sodium roasting and remains in COPR, wasting valuable Cr resources. In this study, Mg was selectively removed by using (NH4)2SO4 roasting in combination with H2SO4 leaching. The results showed that the selective removal of 79.55% Mg from COPR could be achieved under the optimum (NH4)2SO4 roasting conditions (80 mmol (NH4)2SO4, 800 °C, 2 h). During the subsequent sodium roasting and acid leaching stages, the Cr extraction rate was 84.63% for the COPR direct roasting and 95.39% for the Mg removal residue roasting. The increased Cr extraction efficiency is attributed to the transformation of Mg-rich spinel and diopside (the Mg & Cr coexisting phases) in COPR converted into easily extractable (Fe,Cr)2O3 and Cr2O3 after the Mg treatment. This study investigated that the phase transformation of the Cr host phases is crucial for the sufficient extraction of Cr and provides inspiration for the development of efficient and practical Cr extraction techniques. Moreover, the method can be extended to the effective extraction of Cr from other Cr-containing wastes.


Assuntos
Cromatos , Resíduos Industriais , Cromo/química , Resíduos Perigosos , Resíduos Industriais/análise , Sódio
5.
Front Pharmacol ; 12: 717719, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34630096

RESUMO

Background: Cranial radiotherapy is clinically used in the treatment of brain tumours; however, the consequent cognitive and emotional dysfunctions seriously impair the life quality of patients. LW-AFC, an active fraction combination extracted from classical traditional Chinese medicine prescription Liuwei Dihuang decoction, can improve cognitive and emotional dysfunctions in many animal models; however, the protective effect of LW-AFC on cranial irradiation-induced cognitive and emotional dysfunctions has not been reported. Recent studies indicate that impairment of adult hippocampal neurogenesis (AHN) and alterations of the neurogenic microenvironment in the hippocampus constitute critical factors in cognitive and emotional dysfunctions following cranial irradiation. Here, our research further investigated the potential protective effects and mechanisms of LW-AFC on cranial irradiation-induced cognitive and emotional dysfunctions in mice. Methods: LW-AFC (1.6 g/kg) was intragastrically administered to mice for 14 days before cranial irradiation (7 Gy γ-ray). AHN was examined by quantifying the number of proliferative neural stem cells and immature neurons in the dorsal and ventral hippocampus. The contextual fear conditioning test, open field test, and tail suspension test were used to assess cognitive and emotional functions in mice. To detect the change of the neurogenic microenvironment, colorimetry and multiplex bead analysis were performed to measure the level of oxidative stress, neurotrophic and growth factors, and inflammation in the hippocampus. Results: LW-AFC exerted beneficial effects on the contextual fear memory, anxiety behaviour, and depression behaviour in irradiated mice. Moreover, LW-AFC increased the number of proliferative neural stem cells and immature neurons in the dorsal hippocampus, displaying a regional specificity of neurogenic response. For the neurogenic microenvironment, LW-AFC significantly increased the contents of superoxide dismutase, glutathione peroxidase, glutathione, and catalase and decreased the content of malondialdehyde in the hippocampus of irradiated mice, accompanied by the increase in brain-derived neurotrophic factor, insulin-like growth factor-1, and interleukin-4 content. Together, LW-AFC improved cognitive and emotional dysfunctions, promoted AHN preferentially in the dorsal hippocampus, and ameliorated disturbance in the neurogenic microenvironment in irradiated mice. Conclusion: LW-AFC ameliorates cranial irradiation-induced cognitive and emotional dysfunctions, and the underlying mechanisms are mediated by promoting AHN in the dorsal hippocampus and improving the neurogenic microenvironment. LW-AFC might be a promising therapeutic agent to treat cognitive and emotional dysfunctions in patients receiving cranial radiotherapy.

6.
Nanoscale ; 12(40): 20922-20932, 2020 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-33090164

RESUMO

γ-Al2O3 nanosheet supported rhodium catalysts with Rh loadings between 0.05 and 2 wt% were prepared by the impregnation method and used for dry reforming of methane (DRM). It was found that Rh species on γ-Al2O3 nanosheets demonstrated excellent stability against sintering at high temperature. After calcining in air at 800 °C followed by reducing with hydrogen at 600 °C, the average particle size of Rh at maximum distribution increases from 1.0 ± 0.3 to 1.8 ± 0.3 nm with an increase in Rh loadings in the catalysts from 0.05 to 2 wt%. Even after reducing with hydrogen at 900 °C, the average size of Rh particles in the catalysts still remained below 2 nm. The results of catalytic performance evaluation show that CH4 and CO2 conversions of 84% and 90%, respectively, with a H2/CO ratio in syngas close to unity can be achieved with a catalyst of Rh loading of only 0.05 wt% at 750 °C. The performance of the catalyst remains stable for more than 200 h. No significant aggregation of the Rh particles is observed on the catalyst after the reaction. The results of XPS, H2-TPR and O2-TPD characterization methods indicate that the strong interaction between Rh and the γ-Al2O3 nanosheets plays a key role in increasing the dispersion of Rh species in the catalyst and preventing it from sintering under high temperature conditions. This factor is also responsible for the superior activity and stability of the catalyst with extremely low Rh loading for the DRM reaction.

7.
Molecules ; 17(6): 7255-65, 2012 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-22695231

RESUMO

The aim of this research was to determine the chemical composition and insecticidal activity of the essential oils derived from flowering aerial parts of Artemisia giraldii Pamp. and A. subdigitata Mattf. (Family: Asteraceae) against the maize weevil (Sitophilus zeamais Motsch.). Essential oils of aerial parts of A. giraldii and A. subdigitata were obtained from hydrodistillation and investigated by GC and GC-MS. A total of 48 and 33 components of the essential oils of A. giraldii and A. subdigitata were identified, respectively. The principal compounds in A. giraldii essential oil were ß-pinene (13.18%), iso-elemicin (10.08%), germacrene D (5.68%), 4-terpineol (5.43%) and (Z)-ß-ocimene (5.06%). 1,8-Cineole (12.26%) and α-curcumene (10.77%) were the two main components of the essential oil of A. subdigitata, followed by ß-pinene (7.38%), borneol (6.23%) and eugenol (5.87%). The essential oils of A. giraldii and A. subdigitata possessed fumigant toxicity against the maize weevils with LC50 values of 6.29 and 17.01 mg/L air, respectively. The two essential oils of A. giraldii and A. subdigitata also exhibited contact toxicity against S. zeamais adults with LD50 values of 40.51 and 76.34 µg/adult, respectively. The results indicated that the two essential oils show potential in terms of fumigant and contact toxicity against grain storage insects.


Assuntos
Artemisia/química , Besouros , Inseticidas , Óleos Voláteis , Animais , Cromatografia Gasosa-Espectrometria de Massas , Inseticidas/química , Dose Letal Mediana , Óleos Voláteis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA