Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 36(8): e2309921, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38016083

RESUMO

Metal halide perovskite light-emitting diodes (PeLEDs) are attracting increasing attention due to their potential applications in flat panel lighting and displays. The solution process, large-area fabrication, and flexibility are attractive properties of PeLEDs over traditional inorganic LEDs. However, it is still very challenging to deposit uniform perovskite films on flexible substrates using a blade or slot-die coating, as the flexible substrate is not perfectly flat. Here, the inkjet printing technique is adopted, and the key challenges are overcome step-by-step in preparing large-area films on flexible substrates. Double-hole transporting layers are first used and a wetting interfacial layer to improve the surface wettability so that the printed perovskite droplets can form a continuous wet film. The fluidic and evaporation dynamics of the perovskite wet layer is manipulated to suppress the coffee ring effect by solvent engineering. Uniform perovskite films are obtained finally on flexible substrates with different perovskite compositions. The peak external quantum efficiency of the inkjet-printed PeLEDs reaches 14.3%. Large-area flexible PeLEDs (4 × 7 cm2 ) also show very uniform emission. This work represents a significant step toward real applications of large-area PeLEDs in flexible flat-panel lighting.

2.
Angew Chem Int Ed Engl ; 62(5): e202213932, 2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36353929

RESUMO

Ion migration is a notorious phenomenon observed in ionic perovskite materials. It causes several severe issues in perovskite optoelectronic devices such as instability, current hysteresis, and phase segregation. Here, we report that, in contrast to lead halide perovskites (LHPs), no ion migration or phase segregation was observed in tin halide perovskites (THPs) under illumination or an electric field. The origin is attributed to a much stronger Sn-halide bond and higher ion migration activation energy (Ea ) in THPs, which remain nearly constant under illumination. We further figured out the threshold Ea for the absence of ion migration to be around 0.65 eV using the CsSny Pb1-y (I0.6 Br0.4 )3 system whose Ea varies with Sn ratios. Our work shows that ion migration does not necessarily exist in all perovskites and suggests metallic doping to be a promising way of stopping ion migration and improving the intrinsic stability of perovskites.

3.
Adv Mater ; 34(35): e2203529, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35908154

RESUMO

Most methods of depositing perovskite films cannot meet the diverse requirements of real applications such as depositing films on various types of substrates, making patterns with different bandgaps for full-color display. Here, a robust mass transfer method of perovskite films and nanostructures is reported, meeting those requirements, by using an ultrathin branched polyethylenimine as interfacial chemical bonding layers. The transfer-printed perovskite films exhibit comparable morphology, composition, optoelectronic properties, and device performances with the counterparts made by optimized spin-coating methods. The perovskite light-emitting diodes (PeLEDs) using the transfer-printed films show decent external quantum efficiencies of 10.5% and 6.7% for red (680 nm) and sky-blue (493 nm) emissions, which are similar to the devices made by spin-coating. This robust transfer printing method also enables the the preparation of perovskite micropatterns with a high resolution up to 1270 pixels per inch. Horizontally aligned red and sky-blue perovskite microstripes are further obtained through multiple printing processes for white PeLEDs. This work demonstrates a feasible strategy for making perovskite films or micropatterns on various substrates for real applications in full-color display, white LEDs, lasing, etc.

4.
Adv Mater ; 34(18): e2110241, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35230736

RESUMO

Mixed lead-tin perovskite solar cells (LTPSCs) with an ideal bandgap are demonstrated as a promising candidate to reach higher power conversion efficiency (PCE) than their Pb-counterparts. Herein, a Br-free mixed lead-tin perovskite material, FA0.8 MA0.2 Pb0.8 Sn0.2 I3 , with a bandgap of 1.33 eV, as a perovskite absorber, is selected. Through density functional theory calculations and optoelectronic techniques, it is demonstrated that both Pb- and Sn-related A-site vacancies are pushed into deeper energetic depth, causing severe nonradiative recombination. Hence, a selective targeting anchor strategy that employs phenethylammonium iodide and ethylenediamine diiodide as co-modifiers to selectively anchor with Pb- and Sn-related active sites and passivate bimetallic traps, respectively, is established. Furthermore, the selectivity of the molecular oriented anchor passivation is demonstrated through energetic depth specificity of Pb- and Sn-related traps. As a result, a substantially enhanced open-circuit voltage (VOC ) from 0.79 to 0.90 V for the LTPSCs is achieved, yielding a champion PCE of 22.51%, which is the highest PCE among the reported ideal-bandgap PSCs. The VOC loss is reduced to 0.43 V.

5.
Adv Mater ; 34(16): e2108939, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35181956

RESUMO

Large-area fabrication of perovskite light-emitting diodes (PeLEDs) through mass-production techniques has attracted growing attention due to their potential applications in lighting. Several breakthroughs are made for red/infrared and green emissions. Nevertheless, large-area blue/sky-blue PeLEDs, a requisite color for lighting, have not yet been reported. Here, efficient and large-area sky-blue PeLEDs are fabricated through blade-coating supersaturated precursors. The volume ratio of dimethyl sulfoxide to dimethylformamide is tuned to obtain a supersaturated CsPb(Br0.84 Cl0.16 )3 solution. Blade-coating this supersaturated precursor results in nucleation in the solution phase with much higher nucleation sites, and a faster crystallization rate. The uniform films formed by this approach exhibit smaller grain size, lower trap density, and higher radiative recombination rate. The peak external quantum efficiency of the blade-coated PeLEDs reaches 10.3% with sky-blue emission (489 nm). Benefitting from the robustness of this blade-coating technique, large-area sky-blue PeLEDs with a device area of 28 cm2 are also achieved with uniform emission. This work represents a significant step forward toward flat-panel lighting and full-color display for the PeLEDs.

6.
Nat Commun ; 12(1): 147, 2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33420040

RESUMO

Large-area light-emitting diodes (LEDs) fabricated by mass-production techniques are needed for low-cost flat-panel lighting. Nevertheless, it is still challenging to fabricate efficient large-area LEDs using organic small molecules (OLEDs), quantum dots (QLEDs), polymers (PLEDs), and recently-developed hybrid perovskites (PeLEDs) due to difficulties controlling film uniformity. To that end, we report sol-gel engineering of low-temperature blade-coated methylammonium lead iodide (MAPbI3) perovskite films. The precipitation, gelation, aging, and phase transformation stages are dramatically shortened by using a diluted, organoammonium-excessed precursor, resulting in ultra-flat large-area films (54 cm2) with roughness reaching 1 nm. The external quantum efficiency of doctor-bladed PeLEDs reaches 16.1%, higher than that of best-performing blade-coated OLEDs, QLEDs, and PLEDs. Furthermore, benefitting from the throughput of the blade-coating process and cheap materials, the expected cost of the emissive layer is projected to be as low as 0.02 cents per cm2, emphasizing its application potential.

7.
Phys Chem Chem Phys ; 20(39): 25476-25481, 2018 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-30276410

RESUMO

CsPbCl3 is a promising material to construct future short wavelength optoelectronic devices based on inorganic perovskite semiconductors. In this study, CsPbCl3 microcrystals were synthesized by a solution phase process. It was found that the photoluminescence (PL) intensities of the CsPbCl3 microcrystals can increase by up to five times under persistent irradiation of UV light without peak shifting, accompanied with an increased absorption coefficient above the band gap and decreased PL lifetime. This PL enhancement is a reversible process with excitation light switching on and off. The photoactivation process of the CsPbCl3 microcrystals is attributed to the passivation of the trap states.

8.
Opt Lett ; 43(9): 2066-2069, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29714747

RESUMO

Multiphoton pumped stimulated emission requires simultaneous absorption of photons for the creation of population inversion to sustain optical amplification. Recently, stimulated emission by simultaneous absorption of up to five photons has been realized. To achieve more diverse nonlinear optical applications, it is desired to have more photons involved in the upconversion process. Here, we demonstrate unambiguously frequency upconverted amplified spontaneous emission and lasing via simultaneous six-photon absorption from inorganic perovskite. Our finding allows the utilization of inorganic perovskite as the novel alternative for higher-order multiphoton fluorescent applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA