RESUMO
Breast cancer is known as the most common type of cancer found in women and a leading cause of cancer death in women, with the global incidence only increasing. Breast cancer in Malaysia is also unfortunately the most prevalent in Malaysian women. Many treatment options are available for breast cancer, but there is increasing resistance developed against treatment and increased recurrence risk, emphasizing the need for new treatment options. This review will focus on the applications of phage display screening in the context of breast cancer. Phage display screening can facilitate the drug discovery process by providing rapid screening and isolation of peptides that bind to targets of interest with high specificity. Peptides derived from phage display target various types of proteins involved in breast cancer, including HER2, C5AR1, p53 and PRDM14, either for therapeutic or diagnostic purposes. Different approaches were employed as well to produce potential peptides using radiolabelling and conjugation techniques. Promising results were reported for in vitro and in vivo studies utilizing peptides derived from phage display screening. Further optimization of the protocols and factors to consider are required to mitigate the challenges involved with phage display screening of peptides for breast cancer diagnosis and treatment.
Assuntos
Neoplasias da Mama , Biblioteca de Peptídeos , Peptídeos , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/metabolismo , Humanos , Feminino , Peptídeos/química , Descoberta de Drogas/métodos , Animais , Técnicas de Visualização da Superfície CelularRESUMO
Clustered Regions of Interspersed Palindromic Repeat (CRISPR)-based techniques have been utilized in various research areas, including agriculture, biotechnology, and medicine. With the use of a short sequence guide RNA and CRISPR-associated (Cas) protein, this technique allows for robust, site-specific manipulation of the genome, aiding researchers in making important biomedical discoveries and scientific advancements. In this review, we explored the applications of CRISPR/Cas systems in the field of parasitology for the identification and validation of novel functional genes, diagnosis of parasitic infections, reduction of parasite virulence, and the disruption of disease transmission. We also discussed how CRISPR can be used for the development of therapeutics, vaccines, and drug discovery. Furthermore, the challenges and future perspectives of this technology are also highlighted.