Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Clin Pharmacokinet ; 63(8): 1205-1220, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39147988

RESUMO

BACKGROUND: The CRUCIAL trial (NCT04217421) is investigating the effect of postnatal and perioperative administration of allopurinol on postoperative brain injury in neonates with critical congenital heart disease (CCHD) undergoing cardiac surgery with cardiopulmonary bypass (CPB) shortly after birth. OBJECTIVE: This study aimed to characterize the pharmacokinetics (PK) of allopurinol and oxypurinol during the preoperative, intraoperative, and postoperative phases in this population, and to evaluate target attainment of the current dosing strategy. METHODS: Nonlinear mixed-effects modeling was used to develop population PK models in 14 neonates from the CRUCIAL trial who received up to five intravenous allopurinol administrations throughout the postnatal and perioperative periods. Target attainment was defined as achieving an allopurinol concentration >2 mg/L in at least two-thirds of the patients during the first 24 h after birth and between the start and 36 h after cardiac surgery with CPB. RESULTS: A two-compartment model for allopurinol was connected to a one-compartment model for oxypurinol with an auto-inhibition effect on the conversion, which best described the PK. In a typical neonate weighing 3.5 kg who underwent cardiac surgery at a postnatal age (PNA) of 5.6 days, the clearance (CL) of allopurinol and oxypurinol at birth was 0.95 L/h (95% confidence interval 0.75-1.2) and 0.21 L/h (0.17-0.27), respectively, which subsequently increased with PNA to 2.97 L/h and 0.41 L/h, respectively, before CPB. During CPB, allopurinol and oxypurinol CL decreased to 1.38 L/h (0.9-1.87) and 0.12 L/h (0.05-0.22), respectively. Post-CPB, allopurinol CL increased to 2.21 L/h (1.74-2.83), while oxypurinol CL dropped to 0.05 L/h (0.01-0.1). Target attainment was 100%, 53.8%, and 100% at 24 h postnatally, 24 h after the start of CPB, and 36 h after the end of cardiac surgery, respectively. The combined concentrations of allopurinol and oxypurinol maintained ≥ 90% inhibition of xanthine oxidase (IC90XO) throughout the postnatal and perioperative period. CONCLUSIONS: The minimal target concentration of allopurinol was not achieved at every predefined time interval in the CRUCIAL trial; however, the dosing strategy used was deemed adequate, since it yielded concentrations well exceeding the IC90XO. The decreased CL of both compounds during CPB suggests influence of the hypothermia, hemofiltration, and the potential sequestration of allopurinol in the circuit. The reduced CL of oxypurinol after CPB is likely attributable to impaired kidney function.


Assuntos
Alopurinol , Ponte Cardiopulmonar , Cardiopatias Congênitas , Modelos Biológicos , Oxipurinol , Humanos , Alopurinol/farmacocinética , Alopurinol/administração & dosagem , Ponte Cardiopulmonar/métodos , Recém-Nascido , Cardiopatias Congênitas/cirurgia , Oxipurinol/farmacocinética , Masculino , Feminino , Procedimentos Cirúrgicos Cardíacos/métodos
2.
J Infect Dis ; 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39166299

RESUMO

Treatment regimens for post-kala-azar dermal leishmaniasis (PKDL) are usually extrapolated from those for visceral leishmaniasis (VL), but drug pharmacokinetics (PK) can differ due to disease-specific variations in absorption, distribution, and elimination. This study characterized PK differences in paromomycin and miltefosine between 109 PKDL and 264 VL patients from eastern Africa. VL patients showed 0.55-fold (95%CI: 0.41-0.74) lower capacity for paromomycin saturable reabsorption in renal tubules, and required a 1.44-fold (1.23-1.71) adjustment when relating renal clearance to creatinine-based eGFR. Miltefosine bioavailability in VL patients was lowered by 69% (62-76) at treatment start. Comparing PKDL to VL patients on the same regimen, paromomycin plasma exposures were 0.74-0.87-fold, while miltefosine exposure until the end of treatment day was 1.4-fold. These pronounced PK differences between PKDL and VL patients in eastern Africa highlight the challenges of directly extrapolating dosing regimens from one leishmaniasis presentation to another.

3.
Lancet Infect Dis ; 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39098321

RESUMO

BACKGROUND: Eumycetoma is an implantation mycosis characterised by a large subcutaneous mass in the extremities commonly caused by the fungus Madurella mycetomatis. Despite the long duration of treatment, commonly a minimum of 12 months, treatment failure is frequent and can lead to amputation. We aimed to compare the efficacy of two doses of fosravuconazole, a synthetic antifungal designed for use in onychomycosis and repurposed for mycetoma, with standard-of-care itraconazole, both in combination with surgery. METHODS: This phase 2, randomised, double-blind, active-controlled, superiority trial was conducted in a single centre in Sudan. Patients with eumycetoma caused by M mycetomatis, who were aged 15 years or older, with a set lesion diameter (>2 cm and ≤16 cm) requiring surgery were included. There was a limit of 20 female patients in the initial enrolment, owing to preclinical toxicity concerns. Exclusion criteria included previous surgical or medical treatment for eumycetoma; presence of loco-regional lymphatic extension; osteomyelitis, or other bone involvement; pregnancy or lactation; severe concomitant diseases; a BMI under 16 kg/m2; contraindication to use of the study drugs; pre-existing liver disease; lymphatic extension; osteomyelitis; transaminase levels more than two times the laboratory's upper limit of normal, or elevated levels of alkaline phosphatase or bilirubin; or any history of hypersensitivity to any azole antifungal drug. Patients were randomly allocated in a 1:1:1 ratio to 300 mg fosravuconazole weekly for 12 months (group 1); 200 mg fosravuconazole weekly for 12 months (group 2); or 400 mg itraconazole daily for 12 months (group 3) using a random number list with non-disclosed fixed blocks of size 12, with equal allocation to each of the three arms within a block. To ensure masking between groups, placebo pills were used to disguise the difference in dosing schedules. All groups took pills twice daily with meals. In all groups, surgery was performed at 6 months. The primary outcome was complete cure at end of treatment at the month 12 visit, as evidenced by absence of mycetoma mass, sinuses, and discharge; normal ultrasonography or MRI examination of the eumycetoma site; and, if a mass was present, negative fungal culture from the former mycetoma site. The primary outcome was assessed in the modified intention-to-treat (mITT) population (all patients who received one or more treatment dose with one or more primary efficacy assessment). Safety was assessed in all patients who received one or more doses of the study drug. This study is registered with ClinicalTrials.gov (NCT03086226) and is complete. FINDINGS: Between May 9, 2017, and June 10, 2021, 104 patients were randomly allocated (34 in group 1 and 2, respectively, and 36 in group 3). 86 (83%) of 104 patients were male and 18 (17%) patients were female. After an unplanned second interim analysis, the study was terminated early for futility. Complete cure at 12 months in the mITT population was 17 (50%) of 34 (95% CI 32-68) for group 1, 22 (65%) of 34 (47-80) for group 2, and 27 (75%) of 36 (58-88) in group 3. Neither dose of fosravuconazole was superior to itraconazole (p=0·35 for 200 mg fosravuconazole vs p=0·030 for 300 mg fosravuconazole). 83 patients had a total of 205 treatment-emergent adverse events, and two patients had serious adverse events that led to discontinuation, neither related to treatment. INTERPRETATION: Treatment with either dose of fosravuconazole was not superior to itraconazole, and the two doses had a numerically lower efficacy. However, fosravuconazole presented no new safety signals, and its lower pill burden and reduced risk of drug-drug interactions compared with the relatively expensive and inaccessible itraconazole suggests further research into effective treatments with a shorter duration and higher cure rate, without the need for surgery are warranted. FUNDING: Drugs for Neglected Diseases initiative.

4.
J Antimicrob Chemother ; 79(7): 1547-1554, 2024 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-38727613

RESUMO

INTRODUCTION: Post-kala-azar dermal leishmaniasis (PKDL) arises as a dermal complication following a visceral leishmaniasis (VL) infection. Current treatment options for PKDL are unsatisfactory, and there is a knowledge gap regarding the distribution of antileishmanial compounds within human skin. The present study investigated the skin distribution of miltefosine in PKDL patients, with the aim to improve the understanding of the pharmacokinetics at the skin target site in PKDL. METHODS: Fifty-two PKDL patients underwent treatment with liposomal amphotericin B (20 mg/kg) plus miltefosine (allometric dosing) for 21 days. Plasma concentrations of miltefosine were measured on study days 8, 15, 22 and 30, while a punch skin biopsy was taken on day 22. A physiologically based pharmacokinetic (PBPK) model was developed to evaluate the distribution of miltefosine into the skin. RESULTS: Following the allometric weight-based dosing regimen, median miltefosine concentrations on day 22 were 43.73 µg/g (IQR: 21.94-60.65 µg/g) in skin and 33.29 µg/mL (IQR: 25.9-42.58 µg/mL) in plasma. The median individual concentration ratio of skin to plasma was 1.19 (IQR: 0.79-1.9). In 87% (45/52) of patients, skin exposure was above the suggested EC90 PK target of 10.6 mg/L associated with in vitro susceptibility. Simulations indicated that the residence time of miltefosine in the skin would be more than 2-fold longer than in plasma, estimated by a mean residence time of 604 versus 266 hours, respectively. CONCLUSION: This study provides the first accurate measurements of miltefosine penetration into the skin, demonstrating substantial exposure and prolonged retention of miltefosine within the skin. These findings support the use of miltefosine in cutaneous manifestations of leishmaniasis. In combination with parasitological and clinical data, these results are critical for the future optimization of combination therapies with miltefosine in the treatment of PKDL.


Assuntos
Anfotericina B , Antiprotozoários , Leishmaniose Cutânea , Leishmaniose Visceral , Fosforilcolina , Pele , Humanos , Fosforilcolina/análogos & derivados , Fosforilcolina/farmacocinética , Fosforilcolina/administração & dosagem , Fosforilcolina/uso terapêutico , Antiprotozoários/farmacocinética , Antiprotozoários/administração & dosagem , Antiprotozoários/uso terapêutico , Masculino , Adulto , Leishmaniose Cutânea/tratamento farmacológico , Leishmaniose Cutânea/parasitologia , Feminino , Pele/parasitologia , Leishmaniose Visceral/tratamento farmacológico , Pessoa de Meia-Idade , Adulto Jovem , Anfotericina B/farmacocinética , Anfotericina B/uso terapêutico , Anfotericina B/administração & dosagem , Adolescente , Ásia Meridional
5.
PLoS Negl Trop Dis ; 18(4): e0012078, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38640118

RESUMO

BACKGROUND: With the current treatment options for visceral leishmaniasis (VL), recrudescence of the parasite is seen in a proportion of patients. Understanding parasite dynamics is crucial to improving treatment efficacy and predicting patient relapse in cases of VL. This study aimed to characterize the kinetics of circulating Leishmania parasites in the blood, during and after different antileishmanial therapies, and to find predictors for clinical relapse of disease. METHODS: Data from three clinical trials, in which Eastern African VL patients received various antileishmanial regimens, were combined in this study. Leishmania kinetoplast DNA was quantified in whole blood with real-time quantitative PCR (qPCR) before, during, and up to six months after treatment. An integrated population pharmacokinetic-pharmacodynamic model was developed using non-linear mixed effects modelling. RESULTS: Parasite proliferation was best described by an exponential growth model, with an in vivo parasite doubling time of 7.8 days (RSE 12%). Parasite killing by fexinidazole, liposomal amphotericin B, sodium stibogluconate, and miltefosine was best described by linear models directly relating drug concentrations to the parasite elimination rate. After treatment, parasite growth was assumed to be suppressed by the host immune system, described by an Emax model driven by the time after treatment. No predictors for the high variability in onset and magnitude of the immune response could be identified. Model-based individual predictions of blood parasite load on Day 28 and Day 56 after start of treatment were predictive for clinical relapse of disease. CONCLUSION: This semi-mechanistic pharmacokinetic-pharmacodynamic model adequately captured the blood parasite dynamics during and after treatment, and revealed that high blood parasite loads on Day 28 and Day 56 after start of treatment are an early indication for VL relapse, which could be a useful biomarker to assess treatment efficacy of a treatment regimen in a clinical trial setting.


Assuntos
Antiprotozoários , Leishmaniose Visceral , Nitroimidazóis , Fosforilcolina/análogos & derivados , Leishmaniose Visceral/tratamento farmacológico , Leishmaniose Visceral/parasitologia , Humanos , Antiprotozoários/farmacocinética , Antiprotozoários/uso terapêutico , Antiprotozoários/farmacologia , Adulto , Feminino , Masculino , Adulto Jovem , Adolescente , África Oriental , Anfotericina B/farmacocinética , Anfotericina B/uso terapêutico , Anfotericina B/farmacologia , Recidiva , DNA de Cinetoplasto/genética , Carga Parasitária , Pessoa de Meia-Idade , Criança , Gluconato de Antimônio e Sódio/uso terapêutico , Gluconato de Antimônio e Sódio/farmacocinética , Pré-Escolar , DNA de Protozoário/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA