Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Clin Cancer Res ; 18(3): 839-49, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22173551

RESUMO

PURPOSE: Detection of pancreatic cancer remains a high priority and effective diagnostic tools are needed for clinical applications. Many cancer cells overexpress integrin α(v)ß(6), a cell surface receptor being evaluated as a novel clinical biomarker. EXPERIMENTAL DESIGN: To validate this molecular target, several highly stable cystine knot peptides were engineered by directed evolution to bind specifically and with high affinity (3-6 nmol/L) to integrin α(v)ß(6). The binders do not cross-react with related integrin α(v)ß(5), integrin α(5)ß(1), or tumor-angiogenesis-associated integrin, α(v)ß(3). RESULTS: Positron emission tomography showed that these disulfide-stabilized peptides rapidly accumulate at tumors expressing integrin α(v)ß(6). Clinically relevant tumor-to-muscle ratios of 7.7 ± 2.4 to 11.3 ± 3.0 were achieved within 1 hour after radiotracer injection. Minimization of off-target dosing was achieved by reformatting α(v)ß(6)-binding activities across various natural and pharmacokinetically stabilized cystine knot scaffolds with different amino acid content. We show that the primary sequence of a peptide scaffold directs its pharmacokinetics. Scaffolds with high arginine or glutamic acid content suffered high renal retention of more than 75% injected dose per gram (%ID/g). Substitution of these amino acids with renally cleared amino acids, notably serine, led to significant decreases in renal accumulation of less than 20%ID/g 1 hour postinjection (P < 0.05, n = 3). CONCLUSIONS: We have engineered highly stable cystine knot peptides with potent and specific integrin α(v)ß(6)-binding activities for cancer detection. Pharmacokinetic engineering of scaffold primary sequence led to significant decreases in off-target radiotracer accumulation. Optimization of binding affinity, specificity, stability, and pharmacokinetics will facilitate translation of cystine knots for cancer molecular imaging.


Assuntos
Antígenos de Neoplasias/metabolismo , Miniproteínas Nó de Cistina/farmacocinética , Integrinas/metabolismo , Neoplasias Pancreáticas/diagnóstico , Compostos Radiofarmacêuticos/farmacocinética , Animais , Bioengenharia , Biomarcadores Tumorais/análise , Miniproteínas Nó de Cistina/síntese química , Miniproteínas Nó de Cistina/química , Feminino , Humanos , Camundongos , Camundongos Nus , Neoplasias Pancreáticas/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Ligação Proteica , Compostos Radiofarmacêuticos/síntese química , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA