Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Toxicol ; 39(3): 1303-1314, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37966020

RESUMO

Allyl isothiocyanate (AITC) is abundant in cruciferous vegetables and it present pharmacological activity including anticancer activity in many types of human cancer cells in vitro and in vivo. Currently, no available information to show AITC affecting DNA damage and repair-associated protein expression in human gastric cancer cells. Therefore, in the present studies, we investigated AITC-induced cytotoxic effects on human gastric cancer in AGS and SNU-1 cells whether or not via the induction of DNA damage and affected DNA damage and repair associated poteins expressions in vitro. Cell viability and morphological changes were assayed by flow cytometer and phase contrast microscopy, respectively, the results indicated AITC induced cell morphological changes and decreased total viable cells in AGS and SNU-1 cells in a dose-dependently. AITC induced DNA condensation and damage in a dose-dependently which based on the cell nuclei was stained by 4', 6-diamidino-2-phenylindole present in AGS and SNU-1 cells. DNA damage and repair associated proteins expression in AGS and SNU-1 cells were measured by Western blotting. The results indicated AITC decreased nuclear factor erythroid 2-related factor 2 (NRF2), heme oxygenase-1 (HO-1), glutathione, and catalase, but increased superoxide dismutase (SOD (Cu/Zn)), and nitric oxide synthase (iNOS) in AGS cells, however, in SNU-1 cells are increased HO-1. AITC increased DNA-dependent protein kinase (DNA-PK), phosphorylation of gamma H2A histone family member X on Ser139 (γH2AXpSer139 ), and heat shock protein 90 (HSP90) in AGS cells. AITC increased DNA-PK, mediator of DNA damage checkpoint protein 1 (MDC1), γH2AXpSer139 , topoisomerase II alpha (TOPIIα), topoisomerase II beta (TOPIIß), HSP90, and heat shock protein 70 (HSP70) in SNU-1 cells. AITC increased p53, p53pSer15 , and p21 but decreased murine double minute 2 (MDM2)pSer166 and O6 -methylguanine-DNA methyltransferase (MGMT) in AGS cells; however, it has a similar effect of AITC except increased ataxia telangiectasia and Rad3 -related protein (ATR)pSer428 , checkpoint kinase 1 (CHK1), and checkpoint kinase 2 (CHK2) in SNU-1 cells. Apparently, both cell responses to AITC are different, nonetheless, all of these observations suggest that AITC inhibits the growth of gastric cancer cells may through induction off DNA damage in vitro.


Assuntos
Neoplasias Gástricas , Proteína Supressora de Tumor p53 , Humanos , Animais , Camundongos , Proteína Supressora de Tumor p53/genética , Dano ao DNA , Isotiocianatos/farmacologia , Reparo do DNA , DNA , Linhagem Celular Tumoral
2.
Environ Toxicol ; 39(1): 457-469, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37792803

RESUMO

Irinotecan (IRI), an anticancer drug to treat colon cancer patients, causes cytotoxic effects on normal cells. Phenethyl isothiocyanate (PEITC), rich in common cruciferous plants, has anticancer activities (induction of cell apoptosis) in many human cancer cells, including colon cancer cells. However, the anticancer effects of IRI combined with PEITC on human colon cancer cells in vitro were unavailable. Herein, the aim of this study is to focus on the apoptotic effects of the combination of IRI and PEITC on human colon cancer HCT 116 cells in vitro. Propidium iodide (PI) exclusion and Annexin V/PI staining assays showed that IRI combined with PEITC decreased viable cell number and induced higher cell apoptosis than that of IRI or PEITC only in HCT 116 cells. Moreover, combined treatment induced higher levels of reactive oxygen species (ROS) and Ca2+ than that of IRI or PEITC only. Cells pre-treated with N-acetyl-l-cysteine (scavenger of ROS) and then treated with IRI, PEITC, or IRI combined with PEITC showed increased viable cell numbers than that of IRI or PEITC only. IRI combined with PEITC increased higher caspase-3, -8, and -9 activities than that of IRI or PEITC only by flow cytometer assay. IRI combined with PEITC induced higher levels of ER stress-, mitochondria-, and caspase-associated proteins than that of IRI or PEITC treatment only in HCT 116 cells. Based on these observations, PEITC potentiates IRI anticancer activity by promoting cell apoptosis in the human colon HCT 116 cells. Thus, PEITC may be a potential enhancer for IRI in humans as an anticolon cancer drug in the future.


Assuntos
Apoptose , Neoplasias do Colo , Humanos , Irinotecano/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Células HCT116 , Linhagem Celular Tumoral , Isotiocianatos/farmacologia , Neoplasias do Colo/tratamento farmacológico
3.
Oncol Rep ; 48(6)2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36222295

RESUMO

The metastasis of human osteosarcoma (OS) shows a difficult­to­treat clinical scenario and results in decreased quality of life and diminished survival rates. Finding or developing novel treatments to improve the life quality of patients is urgent. Bisdemethoxycurcumin (BDMC), a natural product, was obtained from the rhizome of turmeric (Curcuma longa) and exerts antitumor activities in numerous human cancer cell lines. At present, there is no study showing BDMC effects on OS cell migration and invasion. In the present study, the effects of BDMC on cell migration and invasion of OS U­2 OS cells were investigated in vitro. Cell viability and proliferation were measured by flow cytometric and MTT assays, respectively. Cell motility, MMP­2 and ­9 activity, and cell migration and invasion were assayed by scratch wound healing, gelatin zymography, and Transwell chamber assays, respectively. The protein expression levels were measured by western blotting. BDMC at 20 and 40 µM significantly reduced total cell viability, and BDMC at 5 and 10 µM significantly inhibited cell motility in U­2 OS cells. BDMC significantly suppressed the activities of MMP­2 and MMP­9 in U­2 OS cells. BDMC suppressed cell invasion and migration after 24 h treatment in U­2 OS cells, and these effects were in a dose­dependently manner. Results from western blotting indicated that BDMC significantly decreased the protein expression levels of PI3K/Akt/NF­κB, PI3K/Akt/GSK3ß, and MAPK pathway in U­2 OS cells. Furthermore, BDMC inhibited uPA, MMP­2, MMP­9, MMP­13, N­cadherin, VE­cadherin, and vimentin but increased E­cadherin in U­2 OS cells. Based on these observations, it was suggested that BDMC may be a potential candidate against migration and invasion of human OS cells in the future.


Assuntos
Produtos Biológicos , Neoplasias Ósseas , Osteossarcoma , Produtos Biológicos/farmacologia , Neoplasias Ósseas/patologia , Caderinas , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Diarileptanoides , Gelatina/farmacologia , Gelatina/uso terapêutico , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Metaloproteinase 13 da Matriz/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , NF-kappa B/metabolismo , Invasividade Neoplásica , Osteossarcoma/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Qualidade de Vida , Transdução de Sinais , Vimentina/metabolismo
4.
Int J Mol Sci ; 23(18)2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-36142326

RESUMO

Some clinically used anti-cancer drugs are obtained from natural products. Allyl isothiocyanate (AITC), a plant-derived compound abundant in cruciferous vegetables, has been shown to possess an anti-cancer ability in human cancer cell lines in vitro, including human brain glioma cells. However, the anti-cancer effects of AITC in human glioblastoma (GBM) cells in vivo have not yet been examined. In the present study, we used GBM8401/luc2 human glioblastoma cells and a GBM8401/luc2-cell-bearing animal model to identify the treatment efficacy of AITC. Here, we confirm that AITC reduced total cell viability and induced cell apoptosis in GBM8401/luc2 cells in vitro. Furthermore, Western blotting also showed that AITC induced apoptotic cell death through decreased the anti-apoptotic protein BCL-2, MCL-1 expression, increased the pro-apoptotic protein BAX expression, and promoted the activities of caspase-3, -8, and -9. Therefore, we further investigated the anti-tumor effects of AITC on human GBM8401/luc2 cell xenograft mice. The human glioblastoma GBM8401/luc2 cancer cells were subcutaneously injected into the right flank of BALB/c nude mice to generate glioblastoma xenograft mice. The animals were randomly divided into three groups: group I was treated without AITC (control); group II with 0.1 mg/day of AITC; and group III with 0.2 mg/day of AITC every 3 days for 27 days. Bodyweight, and tumor volume (size) were recorded every 3 days. Tumors exhibiting Luc2 intensity were measured, and we quantified intensity using Living Image software on days 0, 12, and 24. After treatment, tumor weight from each mouse was recorded. Tumor tissues were examined for histopathological changes using H&E staining, and we analyzed the protein levels via immunohistochemical analysis. Our results indicate that AITC significantly inhibited tumor growth at both doses of AITC due to the reduction in tumor size and weight. H&E histopathology analysis of heart, liver, spleen, and kidney samples revealed that AITC did not significantly induce toxicity. Body weight did not show significant changes in any experiment group. AITC significantly downregulated the protein expression levels of MCL-1, XIAP, MMP-9, and VEGF; however, it increased apoptosis-associated proteins, such as cleaved caspase-3, -8, and -9, in the tumor tissues compared with the control group. Based on these observations, AITC exhibits potent anti-cancer activity in the human glioblastoma cell xenograft model via inhibiting tumor cell proliferation and the induction of cell apoptosis. AITC may be a potential anti-GBM cancer drug that could be used in the future.


Assuntos
Antineoplásicos , Produtos Biológicos , Glioblastoma , Glioma , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Produtos Biológicos/farmacologia , Caspase 3/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Glioma/tratamento farmacológico , Isotiocianatos/farmacologia , Isotiocianatos/uso terapêutico , Metaloproteinase 9 da Matriz , Camundongos , Camundongos Nus , Proteína de Sequência 1 de Leucemia de Células Mieloides , Compostos Fitoquímicos/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Fator A de Crescimento do Endotélio Vascular/farmacologia , Proteína X Associada a bcl-2
5.
Anticancer Res ; 42(8): 3825-3833, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35896265

RESUMO

BACKGROUND/AIM: Non-small-cell lung cancer (NSCLC) is the most common type of lung cancer worldwide, and treatment outcomes are still poor. Magnolol, a hydroxylated biphenyl isolated from Magnolia officinalis, was found to be effective against hepatocellular carcinoma via inactivating nuclear-factor-kappa B (NF-B) signaling. However, whether magnolol targets not only NF-B but also other factors in NSCLC and may contribute to the suppression of tumor progression is unclear. MATERIALS AND METHODS: Cell viability, flow cytometry, and western blotting assays were used to identify the mechanism of magnolol action in human lung adenocarcinoma cell lines A549 and CL1-5-F4. RESULTS: Our results indicated that magnolol induced cytotoxicity through extrinsic/intrinsic apoptosis signaling and suppressed phosphorylation of signal transducer and activator of transcription 3 (STAT3)/NF-B and expression of their downstream proteins. CONCLUSION: Magnolol not only induced extrinsic and intrinsic apoptosis signaling but also inactivated STAT3/NF-B and attenuated their signaling of epithelial-mesenchymal transition and metastasis-related protein expression in NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Lignanas , Neoplasias Pulmonares , Apoptose , Compostos de Bifenilo/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Humanos , Lignanas/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , NF-kappa B/metabolismo , Fator de Transcrição STAT3/metabolismo
6.
Oxid Med Cell Longev ; 2022: 2108289, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35368876

RESUMO

Phenethyl isothiocyanate (PEITC), extracted from cruciferous vegetables, showed anticancer activity in many human cancer cells. Our previous studies disclosed the anticancer activity of PEITC in human glioblastoma multiforme (GBM) 8401 cells, including suppressing the cell proliferation, inducing apoptotic cell death, and suppressing cell migration and invasion. Furthermore, PEITC also inhibited the growth of xenograft tumors of human glioblastoma cells. We are the first to investigate PEITC effects on the receptor tyrosine kinase (RTK) signaling pathway and the effects of proinflammatory cytokines on glioblastoma. The cell viability was analyzed by flow cytometric assay. The protein levels and mRNA expressions of cytokines, including tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), and interleukin-6 (IL-6), were determined by enzyme-linked immunosorbent assay (ELISA) reader and real-time polymerase chain reaction (PCR) analysis, respectively. Furthermore, nuclear factor-kappa B- (NF-κB-) associated proteins were evaluated by western blotting. NF-κB expression and nuclear translocation were confirmed by confocal laser microscopy. NF-κB binding to the DNA was examined by electrophoretic mobility shift assay (EMSA). Our results indicated that PEITC decreased the cell viability and inhibited the protein levels and expressions of IL-1ß, IL-6, and TNF-α genes at the transcriptional level in GBM 8401 cells. PEITC inhibited the binding of NF-κB on promoter site of DNA in GBM 8401 cells. PEITC also altered the protein expressions of protein kinase B (Akt), extracellular signal-regulated kinase (ERK), and NF-κB signaling pathways. The inflammatory responses in human glioblastoma cells may be suppressed by PEITC through the phosphoinositide 3-kinase (PI3K)/Akt/NF-κB signaling pathway. Thus, PEITC may have the potential to be an anti-inflammatory agent for human glioblastoma in the future.


Assuntos
Glioblastoma , Fosfatidilinositol 3-Quinase , Citocinas , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Humanos , Isotiocianatos , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
7.
Int J Mol Sci ; 23(1)2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-35008959

RESUMO

Bisdemethoxycurcumin (BDMC) has biological activities, including anticancer effects in vitro; however, its anticancer effects in human glioblastoma (GBM) cells have not been examined yet. This study aimed to evaluate the tumor inhibitory effect and molecular mechanism of BDMC on human GBM 8401/luc2 cells in vitro and in vivo. In vitro studies have shown that BDMC significantly reduced cell viability and induced cell apoptosis in GBM 8401/luc2 cells. Furthermore, BDMC induced apoptosis via inhibited Bcl-2 (anti-apoptotic protein) and increased Bax (pro-apoptotic proteins) and cytochrome c release in GBM 8401/luc2 cells in vitro. Then, twelve BALB/c-nude mice were xenografted with human glioblastoma GBM 8401/luc2 cancer cells subcutaneously, and the xenograft nude mice were treated without and with BDMC (30 and 60 mg/kg of BDMC treatment) every 3 days. GBM 8401/luc2 cell xenografts experiment showed that the growth of the tumors was significantly suppressed by BDMC administration at both doses based on the reduction of tumor size and weights. BDMC did not change the body weight and the H&E histopathology analysis of liver samples, indicating that BDMC did not induce systemic toxicity. Meanwhile, treatment with BDMC up-regulated the expressions of BAX and cleaved caspase-3, while it down-regulated the protein expressions of Bcl-2 and XIAP in the tumor tissues compared with the control group. This study has demonstrated that BDMC presents potent anticancer activity on the human glioblastoma GBM 8401/luc2 cell xenograft model by inducing apoptosis and inhibiting tumor cell proliferation and shows the potential for further development to the anti-GBM cancer drug.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Diarileptanoides/farmacologia , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Ciências Biocomportamentais , Biomarcadores , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Regulação da Expressão Gênica , Glioblastoma/tratamento farmacológico , Glioblastoma/etiologia , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Camundongos , Camundongos Nus , Transdução de Sinais , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Biosci Biotechnol Biochem ; 85(11): 2250-2262, 2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34482401

RESUMO

Gastric cancer has a poor prognosis; once cancer has metastasized, it can easily lead to patient death. Melittin is one of the major components extracted from the bee venom. It has been shown that melittin emerges antitumor activities against many human cancer cell lines. Our results indicated that melittin at 0.2-0.5 µm significantly reduced total cell viability in human gastric cancer AGS cells. At low concentrations (0.05-0.15 µm), melittin displayed antimetastasis effects and inhibited cell adhesion and colony formation. Besides, it inhibited cell motility and suppressed cell migration and invasion. Melittin inhibited the activities of MMP-2 and MMP-9 and the integrity of cell membrane in AGS cells. Furthermore, Western blotting results showed that melittin decreased the protein expressions of Wnt/BMP and MMP-2 signaling pathways. Based on these observations, melittin inhibited cell migration and invasion of AGS cells through multiple signaling pathways. It may be used to treat metastasized gastric cancers in the future.


Assuntos
Meliteno
9.
Anticancer Res ; 41(9): 4343-4351, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34475054

RESUMO

BACKGROUND/AIM: Ally lisothiocyanate (AITC), a constituent of naturally occurring isothiocyanates (ITCs) found in some Brassica vegetables, has been previously demonstrated to have anti-carcinogenic activity. However, there is no available information showing that AITC induces DNA damage and alters DNA damage repair proteins in human breast cancer MCF-7 cells. MATERIALS AND METHODS: In the present study, we investigated the effects of AITC on DNA damage and repair responses in human breast cancer MCF-7 cells in vitro. Cell viability was measured by flow cytometric assay. DNA condensation (apoptotic cell death) and DNA fragmentation (laddered DNA) were assayed by DAPI staining and DNA gel electrophoresis assays, respectively. Furthermore, DNA damage (comet tail) was measured by the comet assay. Western blotting was used to measure the expression of DNA damage- and repair-associated proteins. RESULTS: AITC decreased cell viability in a dose-dependent and induced apoptotic cell death (DNA condensation and fragmentation) and DNA damage in MCF-7 cells. AITC increased p-ATMSer1981, p-ATRSer428, p53, p-p53Ser15, p-H2A.XSer139, BRCA1, and PARP at 10-30 µM at 24 and 48 h treatments. However, AITC decreased DNA-PK at 24 and 48 h treatment, and decreased MGMT at 48 h in MCF-7 cells. CONCLUSION: AITC induced cytotoxic effects (decreased viable cell number) through induction of DNA damage and condensation and altered DNA damage and repair associated proteins in MCF-7 cells in vitro.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Neoplasias da Mama/genética , Reparo do DNA/efeitos dos fármacos , Isotiocianatos/farmacologia , Neoplasias da Mama/metabolismo , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Dano ao DNA , Relação Dose-Resposta a Droga , Feminino , Redes Reguladoras de Genes/efeitos dos fármacos , Humanos , Células MCF-7
10.
In Vivo ; 35(5): 2687-2696, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34410957

RESUMO

BACKGROUND/AIM: Ouabain, isolated from natural plants, exhibits anticancer activities; however, no report has presented its mechanism of DNA damage induction in human osteosarcoma cancer cells in vitro. The aim of this study was to investigate whether ouabain induces DNA damage and repair, accompanied with molecular pathways in human osteosarcoma cancer U-2 OS cells in vitro. MATERIALS AND METHODS: The percentage of viable cell number was measured by flow cytometric assay; DNA damage was assayed by DAPI staining, comet assay, and agarose gel electrophoresis. DNA damage and repair associated protein expressions were assayed by western blotting assays. RESULTS: Ouabain reduced total cell viability, induced chromatin condensation, DNA fragmentation, and DNA damage in U-2 OS cells. Ouabain increased p-ATMSer1981, p-ATRSer428, and p53 at 2.5-10 µM, increased p-p53Ser15 at 10 µM; however, it decreased p-MDM2Ser166 at 2.5-10 µM. Ouabain increased p-H2A.XSer139, MDC-1, and PARP at 2.5-10 µM and BRCA1 at 5-10 µM; however, it decreased DNA-PK and MGMT at 2.5-10 µM in U-2 OS cells at 48 h treatment. Ouabain promoted expression and nuclear translocation of p-H2A.XSer139 in U-2 OS cells and this was confirmed by confocal laser microscopy. CONCLUSION: Ouabain reduced total viable cell number through triggering DNA damage and altering the protein expression of DNA damage and repair system in U-2 OS cells in vitro.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Apoptose , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/genética , Linhagem Celular Tumoral , Dano ao DNA , Reparo do DNA , Humanos , Osteossarcoma/tratamento farmacológico , Osteossarcoma/genética , Ouabaína/farmacologia
11.
In Vivo ; 35(4): 2047-2057, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34182480

RESUMO

BACKGROUND: Tetrandrine, a bis-benzylisoquinoline alkaloid, induces apoptosis of many types of human cancer cell. Hydrogen peroxide (H2O2) is a reactive oxygen species inducer; however, there are no reports to show whether pre-treatment of tetrandrine with H2O2 induces more cell apoptosis than H2O2 alone. Thus, the present study investigated the effects of tetrandrine on H2O2-induced cell apoptosis of human keratinocytes, HaCaT, in vitro. MATERIALS AND METHODS: HaCaT cells were pre-treated with and without tetrandrine for 1 h, and then treated with H2O2 for examining cell morphological changes and cell viability using contrast-phase microscopy and propidium iodide (PI) exclusion assay, respectively. Cells were measured apoptotic cell death by using annexin V/PI double staining and further analyzed by flow cytometer. Cells were further assessed for DNA condensation using 2-(4-amidinophenyl)-6-indolecarbamidine staining. Western blotting was used to measure expression of apoptosis-associated proteins and confocal laser microscopy was used to measure the protein expression and nuclear translocation from the cytoplasm to nuclei. RESULTS: Pre-treatment of tetrandrine for 1 h and treatment with H2O2 enhanced H2O2-induced cell morphological changes and reduced cell viability, whilst increasing apoptotic cell death and DNA condensation. Furthermore, tetrandrine significantly increased expression of reactive oxygen species-associated proteins such as superoxide dismutase (Cu/Zn) and superoxide dismutase (Mn) but significantly reduced the level of catalase, which was also confirmed by confocal laser microscopy. It also increased expression of DNA repair-associated proteins ataxia telangiectasia mutated, ataxia-telangectasia and Rad3-related, phospho-P53, P53 and phosphorylated histone H2AX, and of pro-apoptotic proteins BCL2 apoptosis regulator-associated X-protein, caspase-3, caspase-8, caspase-9 and poly ADP ribose polymerase in HaCaT cells. CONCLUSION: These are the first and novel findings showing tetrandrine enhances H2O2-induced apoptotic cell death of HaCaT cells and may provide a potent approach for the treatment of proliferated malignant keratinocytes.


Assuntos
Benzilisoquinolinas , Caspases , Apoptose , Benzilisoquinolinas/farmacologia , Caspases/genética , Sobrevivência Celular , Humanos , Peróxido de Hidrogênio , Queratinócitos , Espécies Reativas de Oxigênio
12.
Anticancer Res ; 41(4): 1859-1870, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33813391

RESUMO

BACKGROUND/AIM: Demethoxycurcumin (DMC), one of the derivatives of curcumin, has been shown to induce apoptotic cell death in many human cancer cell lines. However, there is no available information on whether DMC inhibits metastatic activity in human glioblastoma cancer cells in vitro. MATERIALS AND METHODS: DMC at 1.0-3.0 µM significantly decreased the proliferation of GBM 8401 cells; thus, we used 2.0 µM for further investigation regarding anti-metastatic activity in human glioblastoma GBM 8401 cells. RESULTS: The internalized amount of DMC has reached the highest level in GBM 8401 cells after 3 h treatment. Wound healing assay was used to determine cell mobility and results indicated that DMC suppressed cell movement of GBM 8401 cells. The transwell chamber assays were used for measuring cell migration and invasion and results indicated that DMC suppressed cell migration and invasion in GBM 8401 cells. Gelatin zymography assay was used to examine gelatinolytic activity (MMP-2) in conditioned media of GBM 8401 cells treated by DMC and results demonstrated that DMC significantly reduced MMP-2 activity. Western blotting showed that DMC reduced the levels of p-EGFR(Tyr1068), GRB2, Sos1, p-Raf, MEK, p-ERK1/2, PI3K, p-Akt/PKBα(Thr308), p-PDK1, NF-κB, TIMP-1, MMP-9, MMP-2, GSK3α/ß, ß-catenin, N-cadherin, and vimentin, but it elevated Ras and E-cadherin at 24 h treatment. CONCLUSION: DMC inhibited cancer cell migration and invasion through inhibition of PI3K/Akt and NF-κB signaling pathways in GBM 8401 cells. We suggest that DMC may be used as a novel anti-metastasis agent for the treatment of human glioblastoma cancer in the future.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Diarileptanoides/farmacologia , Glioblastoma/tratamento farmacológico , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neoplasias Encefálicas/enzimologia , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Glioblastoma/enzimologia , Glioblastoma/patologia , Humanos , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , NF-kappa B/metabolismo , Invasividade Neoplásica , Transdução de Sinais , beta Catenina/metabolismo
13.
Environ Toxicol ; 36(5): 764-772, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33347704

RESUMO

Genistein (GEN) has been shown to induce apoptotic cell death in various human cancer cells. L-asparaginase (Asp), a clinical drug for leukemia, has been shown to induce cell apoptosis in leukemia cells. No available information concerning GEN combined with Asp increased the cell apoptosis compared to GEN or Asp treatment alone. The objective of this study is to evaluate the anti-leukemia activity of GEN combined with Asp on human leukemia HL-60 cells in vitro. The cell viability, the distribution of cell cycle, apoptotic cell death, and the level of ΔΨm were examined by flow cytometric assay. The expressions of apoptosis-associated proteins were measured by western blotting. GEN combined with Asp revealed a more significant decrease in total viable cells and induced a higher percentage of G2/M phase arrest, DNA damage, and cell apoptosis than that of GEN or Asp treatment only in HL-60 cells. Furthermore, the combined treatments (GEN and Asp) showed a higher decrease in the level of ΔΨm than that of GEN or Asp treatment only. These results indicated that GEN combined with Asp induced mitochondria dysfunction by disrupting the mitochondrial membrane potential. The results from western blotting demonstrated that the treatment of GEN combined with Asp showed a higher increase in the levels of Bax and Bak (pro-apoptotic proteins) and an active form of caspase-3 and a higher decrease in Bcl-2 (anti-apoptotic protein) than that of GEN or Asp treatment alone. GEN significantly enhances the efficiency of Asp on cytotoxic effects (the induction of apoptosis) in HL-60 cells.


Assuntos
Genisteína , Leucemia , Apoptose , Asparaginase , Genisteína/farmacologia , Células HL-60 , Humanos
14.
Anticancer Res ; 40(12): 6869-6877, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33288579

RESUMO

BACKGROUND/AIM: Maslinic acid, a natural plant-derived triterpenoid compound, exhibits pharmacological activities, including anti-cancer. In the present study, we investigated the cytotoxic effects of maslinic acid on human cervical cancer HeLa cells in vitro and further investigated the molecular mechanism of maslinic acid-induced DNA damage and repair. MATERIALS AND METHODS: Cell viability was measured by flow cytometry. DNA condensation (apoptotic cell death), DNA damage, and DNA fragmentation (DNA ladder) were assayed by DAPI staining, comet assay, and agarose gel electrophoresis, respectively. The expression of DNA damage and repair proteins was assayed by western blotting. RESULTS: Maslinic acid decreased total cell viability and induced DNA condensation, damage, and fragmentation in HeLa cells. Furthermore, maslinic acid elevated the levels of p-ATMSer1981, p-ATRSer428, p53, p-p53Ser151, p-H2A.XSer139, BRCA1 and PARP at 30-40 µM. However, it decreased the levels of DNA-PK and MGMT. CONCLUSION: Maslinic acid reduced the number of viable HeLa cells by inducing DNA damage and altering the expression of proteins involved in DNA damage and repair.


Assuntos
Dano ao DNA/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Triterpenos/farmacologia , Neoplasias do Colo do Útero/genética , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Fragmentação do DNA/efeitos dos fármacos , Proteínas de Ligação a DNA , Feminino , Células HeLa , Humanos , Neoplasias do Colo do Útero/metabolismo
15.
In Vivo ; 34(5): 2469-2474, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32871774

RESUMO

BACKGROUND/AIM: Demethoxycurcumin (DMC), a derivate of curcumin from natural plants, exerts antitumor effects on various human cancer cells in vitro and in vivo. Nevertheless, no reports have disclosed whether DMC can affect the growth of human cervical cancer cells in vivo. Therefore we investigated the antitumor effects of DMC on a HeLa cell xenograft model in nude mice in this study. MATERIALS AND METHODS: Twenty-four nude mice were subcutaneously injected with HeLa cells. All mice were randomly divided into control, low-dose DMC (30 mg/kg), and high-dose DMC (50 mg/kg) groups and individual mice were treated intraperitoneally accordingly every 2 days. RESULTS: DMC significantly reduced tumor weights and volumes of HeLa cell xenografts in mice, indicating the suppression of growth of xenograft tumors. CONCLUSION: These effects and findings might provide evidence for investigating the potential use of DMC as an anti-cervical cancer drug in the future.


Assuntos
Curcumina , Neoplasias do Colo do Útero , Animais , Apoptose , Linhagem Celular Tumoral , Curcumina/farmacologia , Diarileptanoides , Feminino , Células HeLa , Xenoenxertos , Humanos , Camundongos , Camundongos Nus , Neoplasias do Colo do Útero/tratamento farmacológico , Ensaios Antitumorais Modelo de Xenoenxerto
16.
J Food Biochem ; : e13387, 2020 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-32720324

RESUMO

The objective of this study was to investigate the effects of tetrandrine (TET) on cell migration and invasion of nasopharyngeal carcinoma NPC-TW 039 cells in vitro. TET at 1-10 µM did not change cell morphology and also did not decrease the total cell viability and proliferation in NPC-TW 039 cells. It decreased the cell mobility based on decreased wound closure in NPC-TW 039 cells by wound healing assay. TET suppressed the cell migration and invasion using transwell system. TET reduced MMP-2 activities at 1-10 µM and these effects are in dose-dependently. After exposed to various treatments, TET decreased the levels of p-ERK, p-JNK, p-p38, RhoA, and NF-κB at 48 hr. Based on these findings, we may suggest TET-inhibited cell migration and invasion of NPC-TW 039 cells via the suppression of MAPK and RhoA signaling pathways for inhibiting the MMP-2 and -9 expression in vitro. PRACTICAL APPLICATIONS: Tetrandrine (TET), a bis-benzylisoquinoline alkaloid, is obtained from the dried root of Stephania tetrandra. TET has been shown to induce cancer cell apoptosis on human cancer cells but its anti-metastasis effect on cell migration and invasion of nasopharyngeal carcinoma cells has not been investigated. Our results showed that TET significantly repressed the cell mobility, migration, and invasion of NPC-TW 039 cells in vitro that involved in inhibiting RhoA, Ras accompanying with p38/MAPK signaling pathway. We conclude that TET may be the anticancer agents for nasopharyngeal carcinoma therapy in the future.

17.
Environ Toxicol ; 35(9): 911-921, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32270916

RESUMO

Leukemia is one of the major diseases causing cancer-related deaths in the young population, and its cure rate is unsatisfying with side effects on patients. Fluorouracil (5-FU) is currently used as an anticancer drug for leukemia patients. Casticin, a natural polymethoxyflavone, exerts anticancer activity against many human cancer cell lines in vitro, but no other reports show 5-FU combined with casticin increased the mouse leukemia cell apoptosis in vitro. Herein, the antileukemia activity of 5-FU combined with casticin in WEHI-3 mouse leukemia cells was investigated in vitro. Treatment of two-drug combination had a higher decrease in cell viability and a higher increase in apoptotic cell death, the level of DNA condensation, and the length of comet tail than that of 5-FU or casticin treatment alone in WEHI-3 cells. In addition, the two-drug combination has a greater production rate of reactive oxygen species but a lower level of Ca2+ release and mitochondrial membrane potential (ΔΨm ) than that of 5-FU alone. Combined drugs also induced higher caspase-3 and caspase-8 activities than that of casticin alone and higher caspase-9 activity than that of 5-FU or casticin alone at 48 hours treatment. Furthermore, 5-FU combined with casticin has a higher expression of Cu/Zn superoxide dismutase (SOD [Cu/Zn]) and lower catalase than that of 5-FU or casticin treatment alone. The combined treatment has higher levels of Bax, Endo G, and cytochrome C of proapoptotic proteins than that of casticin alone and induced lower levels of B-cell lymphoma 2 (BCL-2) and BCL-X of antiapoptotic proteins than that of 5-FU or casticin only. Furthermore, the combined treatment had a higher expression of cleaved poly (ADP-ribose) polymerase (PARP) than that of casticin only. Based on these findings, we may suggest that 5-FU combined with casticin treatment increased apoptotic cell death in WEHI-3 mouse leukemia cells that may undergo mitochondria and caspases signaling pathways in vitro.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Flavonoides/farmacologia , Fluoruracila/farmacologia , Animais , Antineoplásicos/administração & dosagem , Caspases/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Citocromos c/metabolismo , Sinergismo Farmacológico , Flavonoides/administração & dosagem , Fluoruracila/administração & dosagem , Humanos , Leucemia/patologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
18.
Toxicol Appl Pharmacol ; 382: 114734, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31470033

RESUMO

Curcumin (Cur), a natural product, has been shown to have anti-tumor activities in many human cancer cells. Gefitinib (Gef) is a clinical drug for cancer patients. However, there is no available information to show whether Gef/Cur nanoparticles (NPs) increased cell apoptosis and anti-tumor effects on xenograft mice model in vivo. In this study, γ-polyglutamic acid-coated nanoparticles loaded with Gef and Cur (γ-PGA-Gef/Cur NPs) were developed and its physicochemical properties and antitumor effects were investigated in vitro and in vivo. The γ-PGA-Gef/Cur NPs showed 548.5 ±â€¯93.7 nm in diameter and -40.3 ±â€¯3.87 mV on surface charge. The loading efficiencies of Gef and Cur were 89.5 and 100%, respectively. γ-PGA-Gef/Cur NPs could be internalized into SAS cells and significantly decreased total cell viability of SAS cells. Western blotting results indicated that both free Gef/Cur and γ-PGA-Gef/Cur NPs induced apoptotic cell death via caspase- and mitochondria-dependent pathways. In vivo studies indicated that treatments of PLGA NPs, free Gef/Cur, and γ-PGA-Gef/Cur NPs did not significantly affect appearances and bodyweights of mice. But the γ-PGA-Gef/Cur NPs significantly suppressed tumor size when comparing to free Gef/Cur-treated group. The nanoparticles developed in this study may be used as a potential therapy for oral cancer.


Assuntos
Apoptose/efeitos dos fármacos , Curcumina/administração & dosagem , Gefitinibe/administração & dosagem , Neoplasias Bucais/tratamento farmacológico , Nanopartículas/administração & dosagem , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Animais , Anti-Inflamatórios não Esteroides/administração & dosagem , Antineoplásicos/administração & dosagem , Apoptose/fisiologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias Bucais/patologia , Inibidores de Proteínas Quinases/administração & dosagem
19.
Anticancer Res ; 39(7): 3697-3709, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31262896

RESUMO

BACKGROUND/AIM: Cervical cancer is considered poorly chemo-sensitive in women and its treatment remains unsatisfactory. Cyperus rotundus is used in Chinese medicine as a therapeutic agent for women's disease. The effects and molecular mechanisms of the ethanol extraction of C. rotundus (CRE) on cervical cancer remain unclear. We aimed to explore the mechanisms and genetic influence of CRE on cervical cancer. MATERIALS AND METHODS: HeLa, human cervical cancer cells were treated with various doses of CRE and changes in cell morphology and cell viability were assessed using microscopy and flow cytometry. Finally, we performed a microarray analysis to scan related genes. RESULTS: The treatment of CRE on HeLa cells caused morphological changes and induced chromatin condensation. DNA microarray analysis showed that CRE led to up-regulation of 449 genes and down-regulation of 484 genes, which were classified in several interaction pathways. CONCLUSION: CRE changed HeLa cell morphology and induced gene expression which associated with apoptosis and cell-cycle arrest. These results provide important information at the transcription level for targeting treatments of human cervical cancer.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Cyperus , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Extratos Vegetais/farmacologia , Neoplasias do Colo do Útero/genética , Apoptose/genética , Ciclo Celular/efeitos dos fármacos , Etanol/química , Feminino , Células HeLa , Humanos , Solventes/química , Neoplasias do Colo do Útero/tratamento farmacológico
20.
Biosci Biotechnol Biochem ; 83(10): 1912-1923, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31187696

RESUMO

Cantharidin (CTD), a sesquiterpenoid bioactive substance, has been reported to exhibit anticancer activity against various types of cancer cells. The aim of the present study was to investigate the apoptosis effects and the underlying mechanisms of CTD on osteosarcoma U-2 OS cells. Results showed that CTD induced cell morphologic changes, reduced total viable cells, induced DNA damage, and G2/M phase arrest. CTD increased the production of reactive oxygen species and Ca2+, and elevated the activities of caspase-3 and -9, but decreased the level of mitochondrial membrane potential. Furthermore, CTD increased the ROS- and ER stress-associated protein expressions and increased the levels of pro-apoptosis-associated proteins, but decreased that of anti-apoptosis-associated proteins. Based on these observations, we suggested that CTD decreased cell number through G2/M phase arrest and the induction of cell apoptosis in U-2 OS cells and CTD could be a potential candidate for osteosarcoma treatments.


Assuntos
Apoptose/efeitos dos fármacos , Cantaridina/farmacologia , Divisão Celular/efeitos dos fármacos , Fase G2/efeitos dos fármacos , Osteossarcoma/patologia , Cálcio/metabolismo , Caspases/metabolismo , Linhagem Celular Tumoral , Cromatina/efeitos dos fármacos , Cromatina/metabolismo , Dano ao DNA , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Osteossarcoma/enzimologia , Osteossarcoma/metabolismo , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA