Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 25(13): 9648-9655, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36943208

RESUMO

Reversible phase transformation in the Brodie graphite oxide-acetonitrile system, which is intercalation or release of part of the sorbed liquid from the interplanar space accompanied by an increase or a decrease in interplanar distances, is commonly observed in twice-oxidized materials. We observed this phenomenon for once-, twice- and thrice-oxidized materials using the EPR spin probe technique, DSC, and temperature programmed XRD. It was shown that all materials under study formed similar low temperature (LT) and high temperature (HT) swollen structures with acetonitrile. The phase transformation of these structures is observed for materials with different oxidation levels in the same temperature range (∼20 K). The twice- and thrice-oxidized Brodie graphite oxides form swollen structures with the same parameters, while the once-oxidized material sorbs less acetonitrile at lower temperatures, but shows the same interplanar distances as those in twice- and thrice-oxidized materials. The spin probe technique has proven its sensitivity to the appearance of small amounts of the new forming swollen structures, which makes this method useful in studies of phase transformations.

2.
Membranes (Basel) ; 13(1)2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36676860

RESUMO

The comparative study of sorption of polar substances acetonitrile and water into powders and membranes (>10 µm thick) of modified Hummers (HGO) and Brodie (BGO) graphite oxides was performed using isopiestic method (IM) and differential scanning calorimetry (DSC). Additional sorption data were obtained for pyridine and 1-octanol. Sorption measurements were accompanied by conventional XRD and XPS control. Electron paramagnetic resonance (EPR) was additionally used to characterize ordering of the membranes. The impact on sorption of synthetic procedure (Brodie or Hummers), method of making membranes, chemical nature of the sorbent, and method of sorption was systematically examined. It was demonstrated that variations in synthetic procedures within both Hummers and Brodie methods did not lead to changes in the sorption properties of the corresponding powders. Sorption of acetonitrile and pyridine was reduced by approximately half when switching from powders to membranes at ambient temperature. DSC measurements at a lower temperature gave equal sorption of acetonitrile into HGO powder and membranes. Water has demonstrated unique sorption properties. Equal sorption of water was measured for HGO membranes and powders at T = 298 K and at T = 273 K. It was demonstrated that lowering the orientational alignment of the membranes led to the increase of sorption. In practice this could allow one to tune sorption/swelling and transport properties of the GO membranes directly by adjusting their internal ordering without the use of any composite materials.

3.
J Phys Chem B ; 125(32): 9235-9243, 2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34378388

RESUMO

The rotational and translational diffusion of negatively charged and uncharged spin probes in five imidazolium-based room-temperature ionic liquids (RTILs), 1-ethyl-3-methylimidazolium tetrafluoroborate, emimBF4, 1-butyl-3-methylimidazolium tetrafluoroborate, bmimBF4, 1-octyl-3-methylimidazolium tetrafluoroborate, omimBF4, 1-octyl-3-methylimidazolium hexafluorophosphate, omimPF6, and 1-octyl-3-methylimidazolium chloride, omimCl, has been studied by means of electron paramagnetic resonance spectroscopy. Detailed analyses of the spin-Hamiltonian parameters and spin exchange interactions have been carried out. The temperature dependences of the line broadening induced by the electronic dipole-dipole interaction and the electron spin exchange coupling are determined. The translational mobility of spin probes is semiquantitatively characterized and successfully explained in the framework of a hypothesis based on the assumption of polar and unpolar domains within the RTILs.

4.
J Phys Chem B ; 123(27): 5875-5891, 2019 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-31251620

RESUMO

A model-free approach for simulation of EPR spectra of nitroxide spin probes in liquid-crystalline materials was suggested and used to obtain parameters of molecular orientation and rotational mobility. The developed method is based on experimental recording and numerical simulation of the angular dependence of EPR spectra, which is shown to be much more informative in comparison with a single EPR spectrum. Quantitative spectral simulations considering both local orientational ordering and distribution of local directors in the sample were used for discrimination of models of rotational mobility and orientational alignment. The method was applied for detailed quantitative characterization of axial, orthorhombic, and low-symmetry non-orthorhombic molecular orientation distributions. It is shown that the ordinarily used model of rotational diffusion in a mean-field potential is suitable for the description of molecular mobility and orientational ordering only for relatively low sample temperatures and low-mobility probe molecules with large sizes. In cases of high molecular mobility, the more realistic jump mechanism of molecular moves can be approximately described as quasi-librations. For ordered liquid crystals it was found that mostly the order parameters up to rank 12-14 are essential and easily determined. When well-aligned materials are described, the order parameters up to 18th rank or even higher become meaningful. Both molecular and sample biaxiality is analyzed and quantitatively characterized. The local molecular ordering and sample orientational alignment are quantitatively characterized separately.

5.
J Phys Chem B ; 118(20): 5589-99, 2014 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-24786911

RESUMO

The orientational distribution of a set of stable nitroxide radicals in aligned liquid crystals 5CB (nematic) and 8CB (smectic A) was studied in detail by numerical simulation of EPR spectra. The order parameters up to the 10th rank were measured. The directions of the principal orientation axes of the radicals were determined. It was shown that the ordering of the probe molecules is controlled by their interaction with the matrix molecules more than the inherent geometry of the probes themselves. The rigid fused phenanthrene-based (A5) and 2-azaphenalene (A4) nitroxides as well as the rigid core elongated C11 and 5α-cholestane (CLS) nitroxides were found to be most sensitive to the orientation of the liquid crystal matrixes.

6.
J Phys Chem B ; 118(7): 1932-42, 2014 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-24479531

RESUMO

The angular dependences of g-value and line width of EPR spectra of paramagnetic all-organic liquid crystalline (LC) materials were measured for the quantitative characterization of the nematic, cholesteric, and smectic C phases. The detailed molecular alignment in mesophases was determined by means of numerical spectra simulation focusing on spin exchange and dipole-dipole magnetic interactions of neighboring molecules. The obtained structural data indicate that the spin polarization mechanism between neighboring molecules rather than the direct through-space interactions between paramagnetic centers is responsible for the specific magnetic properties of the studied LC materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA