Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Psychol ; 13: 1017317, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36571021

RESUMO

Children show substantial variation in the rate of physical, cognitive, and social maturation as they traverse adolescence and enter adulthood. Differences in developmental paths are thought to underlie individual differences in later life outcomes, however, there remains a lack of consensus on the normative trajectory of cognitive maturation in adolescence. To address this problem, we derive a Cognitive Maturity Index (CMI), to estimate the difference between chronological and cognitive age predicted with latent factor estimates of inhibitory control, risky decision-making and emotional processing measured with standard neuropsychological instruments. One hundred and forty-one children from the Adolescent Development Study (ADS) were followed longitudinally across three time points from ages 11-14, 13-16, and 14-18. Age prediction with latent factor estimates of cognitive skills approximated age within ±10 months (r = 0.71). Males in advanced puberty displayed lower cognitive maturity relative to peers of the same age; manifesting as weaker inhibitory control, greater risk-taking, desensitization to negative affect, and poor recognition of positive affect.

2.
Water Res ; 203: 117510, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34375930

RESUMO

Long-term trends in riverine nutrient availability have rarely been linked to both phytoplankton composition and functioning. To explore how the changing availability of N and P affects not only phytoplankton abundance and composition but also the resource use efficiency of N, P, and CO2, a 25-year time series of water quality in the lower Han River, Korea, was combined with additional measurements of riverine dissolved organic carbon (DOC) and CO2. Despite persistent eutrophication, recent decreases in P relative to N have been steep in the lowest reach, increasing the annual mean mass ratio of N to P (N/P) from 24 (1994-2015) to 65 (2016-2018). While Chl a and cyanobacterial abundance exhibited overall positive and inverse relationships with P concentrations and N/P, respectively, severe harmful algal blooms (HABs) concurred with short-term increases in P and temperature. Microcystis often dominated HABs at low N/P that usually favors N-fixing cyanobacteria such as Anabaena. In the middle and lower reaches, phytoplanktonic P use efficiency was typically lower at low N/P. V-shaped relationships between N/P and CO2 concentrations, together with longitudinal upward shifts in the inverse relationship between Chl a and CO2, implied that eutrophication-enhanced phytoplankton biomass could turn into a significant source of CO2. after passing a threshold. The combined results suggest that cyanobacterial dominance co-limited by P availability and temperature can lower planktonic P use efficiency, while enhancing riverine CO2 emissions at low N/P ratios.


Assuntos
Cianobactérias , Fitoplâncton , Dióxido de Carbono , Eutrofização , Proliferação Nociva de Algas , Lagos , Nutrientes
3.
Water Res ; 187: 116417, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32987292

RESUMO

Although eutrophic urban rivers receiving loads of wastewater represent an important anthropogenic source of N2O, little is known as to how temperature and other environmental factors affect temporal variations in N2O emissions from wastewater treatment plants (WWTPs) and downstream rivers. Two-year monitoring at a WWTP and five river sites was complemented with available water quality data, laboratory incubations, and stable isotopes in N2O and NO3- to explore how wastewater effluents interact with seasonal changes in environmental conditions to affect downstream metabolic processes and N2O emissions from the lower Han River traversing the megacity Seoul. Water quality data from four WWTPs revealed significant inverse relationships between water temperature and the concentrations or fluxes of total N (TN) in effluents. Increased TN fluxes at low temperatures concurred with N2O surges in WWTP effluents and downstream rivers, counteracting the long-term decline in TN fluxes resulting from enhanced wastewater treatments. Incubation experiments with river water and sediment, in isolation or combined, implied the hypoxic winter sediment as a large source of N2O, whereas the anoxic summer sediment produced a smaller amount of N2O only when it was added with oxic water. For both WWTP effluents and downstream rivers, bulk isotope ratios and intramolecular distribution of 15N in N2O distinctly differed between summer and winter, indicating incomplete denitrification in the hypoxic sediment at low temperatures as a primary downstream source adding to WWTP-derived N2O. Winter surges in wastewater TN and sediment N2O release highlight temperature variability as an underappreciated control over anthropogenic N2O emissions from increasingly urbanized river systems worldwide.


Assuntos
Óxido Nitroso , Purificação da Água , Óxido Nitroso/análise , Rios , Temperatura , Águas Residuárias/análise
4.
Brain Pathol ; 26(3): 404-9, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26940152

RESUMO

The causes of most neurodegenerative diseases are attributed to multiple genetic and environmental factors interacting with one another. Above all, inflammation in the nervous system has been implicated in many neurodegenerative diseases. Still, the roles of neuroinflammation in disease mechanisms and the triggers of inflammatory responses in disease-inflicted brain tissues seem to remain unclear. This review will examine previous studies that had been done from genetic, pathological and epidemiological perspectives. These studies assess the involvement of neuroinflammation in synucleinopathies, a group of neurodegenerative diseases that are characterized by deposition of α-synuclein aggregates such as Parkinson's disease, dementia with Lewy bodies and multiple system atrophy. The review will also discuss the role of α-synuclein aggregates in triggering inflammatory responses from glial cells. It is expected that a precise assessment of the roles and mechanisms of neuroinflammation in neurodegenerative diseases will pave the way for the development of disease-modifying drugs.


Assuntos
Inflamação/complicações , Inflamação/patologia , Doenças Neurodegenerativas/etiologia , Doenças Neurodegenerativas/patologia , Sinucleínas/efeitos adversos , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA