Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37922170

RESUMO

Tactile graphics are one of the best ways for a blind person to perceive a chart using touch, but their fabrication is often costly, time-consuming, and does not lend itself to dynamic exploration. Refreshable haptic displays tend to be expensive and thus unavailable to most blind individuals. We propose TACTUALPLOT, an approach to sensory substitution where touch interaction yields auditory (sonified) feedback. The technique relies on embodied cognition for spatial awareness-i.e., individuals can perceive 2D touch locations of their fingers with reference to other 2D locations such as the relative locations of other fingers or chart characteristics that are visualized on touchscreens. Combining touch and sound in this way yields a scalable data exploration method for scatterplots where the data density under the user's fingertips is sampled. The sample regions can optionally be scaled based on how quickly the user moves their hand. Our development of TactualPlot was informed by formative design sessions with a blind collaborator, whose practice while using tactile scatterplots caused us to expand the technique for multiple fingers. We present results from an evaluation comparing our TactualPlot interaction technique to tactile graphics printed on swell touch paper.

2.
IEEE Trans Vis Comput Graph ; 28(1): 1084-1094, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34587061

RESUMO

For all its potential in supporting data analysis, particularly in exploratory situations, visualization also creates barriers: accessibility for blind and visually impaired individuals. Regardless of how effective a visualization is, providing equal access for blind users requires a paradigm shift for the visualization research community. To enact such a shift, it is not sufficient to treat visualization accessibility as merely another technical problem to overcome. Instead, supporting the millions of blind and visually impaired users around the world who have equally valid needs for data analysis as sighted individuals requires a respectful, equitable, and holistic approach that includes all users from the onset. In this paper, we draw on accessibility research methodologies to make inroads towards such an approach. We first identify the people who have specific insight into how blind people perceive the world: orientation and mobility (O&M) experts, who are instructors that teach blind individuals how to navigate the physical world using non-visual senses. We interview 10 O&M experts-all of them blind-to understand how best to use sensory substitution other than the visual sense for conveying spatial layouts. Finally, we investigate our qualitative findings using thematic analysis. While blind people in general tend to use both sound and touch to understand their surroundings, we focused on auditory affordances and how they can be used to make data visualizations accessible-using sonification and auralization. However, our experts recommended supporting a combination of senses-sound and touch-to make charts accessible as blind individuals may be more familiar with exploring tactile charts. We report results on both sound and touch affordances, and conclude by discussing implications for accessible visualization for blind individuals.


Assuntos
Gráficos por Computador , Pessoas com Deficiência Visual , Cegueira , Humanos , Tato , Visão Ocular
3.
IEEE Trans Vis Comput Graph ; 27(2): 1332-1342, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33048692

RESUMO

Causality visualization can help people understand temporal chains of events, such as messages sent in a distributed system, cause and effect in a historical conflict, or the interplay between political actors over time. However, as the scale and complexity of these event sequences grows, even these visualizations can become overwhelming to use. In this paper, we propose the use of textual narratives as a data-driven storytelling method to augment causality visualization. We first propose a design space for how textual narratives can be used to describe causal data. We then present results from a crowdsourced user study where participants were asked to recover causality information from two causality visualizations-causal graphs and Hasse diagrams-with and without an associated textual narrative. Finally, we describe Causeworks, a causality visualization system for understanding how specific interventions influence a causal model. The system incorporates an automatic textual narrative mechanism based on our design space. We validate Causeworks through interviews with experts who used the system for understanding complex events.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA