Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 174
Filtrar
1.
Neurooncol Pract ; 11(3): 266-274, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38737610

RESUMO

Background: Glioblastoma (GBM) poses therapeutic challenges due to its aggressive nature, particularly for patients with poor functional status and/or advanced disease. Hypofractionated radiotherapy (RT) regimens have demonstrated comparable disease outcomes for this population while allowing treatment to be completed more quickly. Here, we report our institutional outcomes of patients treated with 2 hypofractionated RT regimens: 40 Gy/15fx (3w-RT) and 50 Gy/20fx (4w-RT). Methods: A single-institution retrospective analysis was conducted of 127 GBM patients who underwent 3w-RT or 4w-RT. Patient characteristics, treatment regimens, and outcomes were analyzed. Univariate and multivariable Cox regression models were used to estimate progression-free survival (PFS) and overall survival (OS). The impact of chemotherapy and RT schedule was explored through subgroup analyses. Results: Median OS for the entire cohort was 7.7 months. There were no significant differences in PFS or OS between 3w-RT and 4w-RT groups overall. Receipt and timing of temozolomide (TMZ) emerged as the variable most strongly associated with survival, with patients receiving adjuvant-only or concurrent and adjuvant TMZ having significantly improved PFS and OS (P < .001). In a subgroup analysis of patients that did not receive TMZ, patients in the 4w-RT group demonstrated a trend toward improved OS as compared to the 3w-RT group (P = .12). Conclusions: This study demonstrates comparable survival outcomes between 3w-RT and 4w-RT regimens in GBM patients. Receipt and timing of TMZ were strongly associated with survival outcomes. The potential benefit of dose-escalated hypofractionation for patients not receiving chemotherapy warrants further investigation and emphasizes the importance of personalized treatment approaches.

2.
Nat Commun ; 15(1): 3728, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38697991

RESUMO

With improvements in survival for patients with metastatic cancer, long-term local control of brain metastases has become an increasingly important clinical priority. While consensus guidelines recommend surgery followed by stereotactic radiosurgery (SRS) for lesions >3 cm, smaller lesions (≤3 cm) treated with SRS alone elicit variable responses. To determine factors influencing this variable response to SRS, we analyzed outcomes of brain metastases ≤3 cm diameter in patients with no prior systemic therapy treated with frame-based single-fraction SRS. Following SRS, 259 out of 1733 (15%) treated lesions demonstrated MRI findings concerning for local treatment failure (LTF), of which 202 /1733 (12%) demonstrated LTF and 54/1733 (3%) had an adverse radiation effect. Multivariate analysis demonstrated tumor size (>1.5 cm) and melanoma histology were associated with higher LTF rates. Our results demonstrate that brain metastases ≤3 cm are not uniformly responsive to SRS and suggest that prospective studies to evaluate the effect of SRS alone or in combination with surgery on brain metastases ≤3 cm matched by tumor size and histology are warranted. These studies will help establish multi-disciplinary treatment guidelines that improve local control while minimizing radiation necrosis during treatment of brain metastasis ≤3 cm.


Assuntos
Neoplasias Encefálicas , Imageamento por Ressonância Magnética , Radiocirurgia , Radiocirurgia/métodos , Humanos , Neoplasias Encefálicas/secundário , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/cirurgia , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Melanoma/patologia , Adulto , Resultado do Tratamento , Carga Tumoral , Idoso de 80 Anos ou mais , Falha de Tratamento , Estudos Retrospectivos
3.
Nat Commun ; 15(1): 3152, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605064

RESUMO

While we recognize the prognostic importance of clinicopathological measures and circulating tumor DNA (ctDNA), the independent contribution of quantitative image markers to prognosis in non-small cell lung cancer (NSCLC) remains underexplored. In our multi-institutional study of 394 NSCLC patients, we utilize pre-treatment computed tomography (CT) and 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) to establish a habitat imaging framework for assessing regional heterogeneity within individual tumors. This framework identifies three PET/CT subtypes, which maintain prognostic value after adjusting for clinicopathologic risk factors including tumor volume. Additionally, these subtypes complement ctDNA in predicting disease recurrence. Radiogenomics analysis unveil the molecular underpinnings of these imaging subtypes, highlighting downregulation in interferon alpha and gamma pathways in the high-risk subtype. In summary, our study demonstrates that these habitat imaging subtypes effectively stratify NSCLC patients based on their risk levels for disease recurrence after initial curative surgery or radiotherapy, providing valuable insights for personalized treatment approaches.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Fluordesoxiglucose F18 , Compostos Radiofarmacêuticos , Recidiva Local de Neoplasia/diagnóstico por imagem , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Tomografia por Emissão de Pósitrons , Tomografia Computadorizada por Raios X , Estudos Retrospectivos
4.
Res Sq ; 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38586046

RESUMO

We present a study where predictive mechanistic modeling is used in combination with deep learning methods to predict individual patient survival probabilities under immune checkpoint inhibitor (ICI) therapy. This hybrid approach enables prediction based on both measures that are calculable from mechanistic models (but may not be directly measurable in the clinic) and easily measurable quantities or characteristics (that are not always readily incorporated into predictive mechanistic models). The mechanistic model we have applied here can predict tumor response from CT or MRI imaging based on key mechanisms underlying checkpoint inhibitor therapy, and in the present work, its parameters were combined with readily-available clinical measures from 93 patients into a hybrid training set for a deep learning time-to-event predictive model. Analysis revealed that training an artificial neural network with both mechanistic modeling-derived and clinical measures achieved higher per-patient predictive accuracy based on event-time concordance, Brier score, and negative binomial log-likelihood-based criteria than when only mechanistic model-derived values or only clinical data were used. Feature importance analysis revealed that both clinical and model-derived parameters play prominent roles in neural network decision making, and in increasing prediction accuracy, further supporting the advantage of our hybrid approach. We anticipate that many existing mechanistic models may be hybridized with deep learning methods in a similar manner to improve predictive accuracy through addition of additional data that may not be readily implemented in mechanistic descriptions.

5.
Med Phys ; 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38640464

RESUMO

BACKGROUND: Magnetic resonance imaging (MRI) scans are known to suffer from a variety of acquisition artifacts as well as equipment-based variations that impact image appearance and segmentation performance. It is still unclear whether a direct relationship exists between magnetic resonance (MR) image quality metrics (IQMs) (e.g., signal-to-noise, contrast-to-noise) and segmentation accuracy. PURPOSE: Deep learning (DL) approaches have shown significant promise for automated segmentation of brain tumors on MRI but depend on the quality of input training images. We sought to evaluate the relationship between IQMs of input training images and DL-based brain tumor segmentation accuracy toward developing more generalizable models for multi-institutional data. METHODS: We trained a 3D DenseNet model on the BraTS 2020 cohorts for segmentation of tumor subregions enhancing tumor (ET), peritumoral edematous, and necrotic and non-ET on MRI; with performance quantified via a 5-fold cross-validated Dice coefficient. MRI scans were evaluated through the open-source quality control tool MRQy, to yield 13 IQMs per scan. The Pearson correlation coefficient was computed between whole tumor (WT) dice values and IQM measures in the training cohorts to identify quality measures most correlated with segmentation performance. Each selected IQM was used to group MRI scans as "better" quality (BQ) or "worse" quality (WQ), via relative thresholding. Segmentation performance was re-evaluated for the DenseNet model when (i) training on BQ MRI images with validation on WQ images, as well as (ii) training on WQ images, and validation on BQ images. Trends were further validated on independent test sets derived from the BraTS 2021 training cohorts. RESULTS: For this study, multimodal MRI scans from the BraTS 2020 training cohorts were used to train the segmentation model and validated on independent test sets derived from the BraTS 2021 cohort. Among the selected IQMs, models trained on BQ images based on inhomogeneity measurements (coefficient of variance, coefficient of joint variation, coefficient of variation of the foreground patch) and the models trained on WQ images based on noise measurement peak signal-to-noise ratio (SNR) yielded significantly improved tumor segmentation accuracy compared to their inverse models. CONCLUSIONS: Our results suggest that a significant correlation may exist between specific MR IQMs and DenseNet-based brain tumor segmentation performance. The selection of MRI scans for model training based on IQMs may yield more accurate and generalizable models in unseen validation.

6.
medRxiv ; 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38559070

RESUMO

Elevated microRNA-155 (miR-155) expression in non-small-cell lung cancer (NSCLC) promotes cisplatin resistance and negatively impacts treatment outcomes. However, miR-155 can also boost anti-tumor immunity by suppressing PD-L1 expression. We developed a multiscale mechanistic model, calibrated with in vivo data and then extrapolated to humans, to investigate the therapeutic effects of nanoparticle-delivered anti-miR-155 in NSCLC, alone or in combination with standard-of-care drugs. Model simulations and analyses of the clinical scenario revealed that monotherapy with anti-miR-155 at a dose of 2.5 mg/kg administered once every three weeks has substantial anti-cancer activity. It led to a median progression-free survival (PFS) of 6.7 months, which compared favorably to cisplatin and immune checkpoint inhibitors. Further, we explored the combinations of anti-miR-155 with standard-of-care drugs, and found strongly synergistic two- and three-drug combinations. A three-drug combination of anti-miR-155, cisplatin, and pembrolizumab resulted in a median PFS of 13.1 months, while a two-drug combination of anti-miR-155 and cisplatin resulted in a median PFS of 11.3 months, which emerged as a more practical option due to its simple design and cost-effectiveness. Our analyses also provided valuable insights into unfavorable dose ratios for drug combinations, highlighting the need for optimizing dose regimen to prevent antagonistic effects. Thus, this work bridges the gap between preclinical development and clinical translation of anti-miR-155 and unravels the potential of anti-miR-155 combination therapies in NSCLC.

7.
Pract Radiat Oncol ; 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38685448

RESUMO

BACKGROUND: A dedicated MRI Simulation(MRsim) for radiation treatment(RT) planning in high-grade glioma(HGG) patients can detect early radiological changes, including tumor progression after surgery and before standard of care chemoradiation. This study aimed to determine the impact of using post-op MRI vs. MRsim as the baseline for response assessment and reporting pseudo-progression on follow-up imaging at one month(FU1) after chemoradiation. METHODS: Histologically confirmed HGG patients were planned for six weeks of RT in a prospective study for adaptive RT planning. All patients underwent post-op MRI, MRsim, and follow-up MRI scans every 2-3 months. Tumor response was assessed by three independent blinded reviewers using Response Assessment in Neuro-Oncology(RANO) criteria when baseline was either post-op MRI or MRsim. Interobserver agreement was calculated using light's kappa. RESULTS: 30 patients (median age 60.5 years; IQR 54.5-66.3) were included. Median interval between surgery and RT was 34 days (IQR 27-41). Response assessment at FU1 differed in 17 patients (57%) when the baseline was post-op MRI vs. MRsim, including true progression vs. partial response(PR) or stable disease(SD) in 11 (37%) and SD vs. PR in 6 (20%) patients. True progression was reported in 19 patients (63.3%) on FU1 when the baseline was post-op MRI vs 8 patients (26.7%) when the baseline was MRsim (p=.004). Pseudo-progression was observed at FU1 in 12 (40%) vs. 4 (13%) patients, when the baseline was post-op MRI vs. MRsim (p=.019). Interobserver agreement between observers was moderate (κ = 0.579; p<0.001). CONCLUSIONS: Our study demonstrates the value of acquiring an updated MR closer to RT in patients with HGG to improve response assessment, and accuracy in evaluation of pseudo-progression even at the early time point of first follow-up after RT. Earlier identification of patients with true progression would enable more timely salvage treatments including potential clinical trial enrolment to improve patient outcomes.

8.
Cell Rep Med ; 5(3): 101463, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38471502

RESUMO

[18F]Fluorodeoxyglucose positron emission tomography (FDG-PET) and computed tomography (CT) are indispensable components in modern medicine. Although PET can provide additional diagnostic value, it is costly and not universally accessible, particularly in low-income countries. To bridge this gap, we have developed a conditional generative adversarial network pipeline that can produce FDG-PET from diagnostic CT scans based on multi-center multi-modal lung cancer datasets (n = 1,478). Synthetic PET images are validated across imaging, biological, and clinical aspects. Radiologists confirm comparable imaging quality and tumor contrast between synthetic and actual PET scans. Radiogenomics analysis further proves that the dysregulated cancer hallmark pathways of synthetic PET are consistent with actual PET. We also demonstrate the clinical values of synthetic PET in improving lung cancer diagnosis, staging, risk prediction, and prognosis. Taken together, this proof-of-concept study testifies to the feasibility of applying deep learning to obtain high-fidelity PET translated from CT.


Assuntos
Neoplasias Pulmonares , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Humanos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Fluordesoxiglucose F18 , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/genética , Tomografia Computadorizada por Raios X , Prognóstico
9.
Cancers (Basel) ; 16(5)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38473297

RESUMO

Docetaxel +/- ramucirumab remains the standard-of-care therapy for patients with metastatic non-small-cell lung cancer (NSCLC) after progression on platinum doublets and immune checkpoint inhibitors (ICIs). The aim of our study was to investigate whether the cancer gene mutation status was associated with clinical benefits from docetaxel +/- ramucirumab. We also investigated whether platinum/taxane-based regimens offered a better clinical benefit in this patient population. A total of 454 patients were analyzed (docetaxel +/- ramucirumab n=381; platinum/taxane-based regimens n=73). Progression-free survival (PFS) and overall survival (OS) were compared among different subpopulations with different cancer gene mutations and between patients who received docetaxel +/- ramucirumab versus platinum/taxane-based regimens. Among patients who received docetaxel +/- ramucirumab, the top mutated cancer genes included TP53 (n=167), KRAS (n=127), EGFR (n=65), STK11 (n=32), ERBB2 (HER2) (n=26), etc. None of these cancer gene mutations or PD-L1 expression was associated with PFS or OS. Platinum/taxane-based regimens were associated with a significantly longer mQS (13.00 m, 95% Cl: 11.20-14.80 m versus 8.40 m, 95% Cl: 7.12-9.68 m, LogRank P=0.019) than docetaxel +/- ramcirumab. Key prognostic factors including age, histology, and performance status were not different between these two groups. In conclusion, in patients with metastatic NSCLC who have progressed on platinum doublets and ICIs, the clinical benefit from docetaxel +/- ramucirumab is not associated with the cancer gene mutation status. Platinum/taxane-based regimens may offer a superior clinical benefit over docetaxel +/- ramucirumab in this patient population.

10.
Radiol Artif Intell ; 6(1): e220231, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38197800

RESUMO

Purpose To present results from a literature survey on practices in deep learning segmentation algorithm evaluation and perform a study on expert quality perception of brain tumor segmentation. Materials and Methods A total of 180 articles reporting on brain tumor segmentation algorithms were surveyed for the reported quality evaluation. Additionally, ratings of segmentation quality on a four-point scale were collected from medical professionals for 60 brain tumor segmentation cases. Results Of the surveyed articles, Dice score, sensitivity, and Hausdorff distance were the most popular metrics to report segmentation performance. Notably, only 2.8% of the articles included clinical experts' evaluation of segmentation quality. The experimental results revealed a low interrater agreement (Krippendorff α, 0.34) in experts' segmentation quality perception. Furthermore, the correlations between the ratings and commonly used quantitative quality metrics were low (Kendall tau between Dice score and mean rating, 0.23; Kendall tau between Hausdorff distance and mean rating, 0.51), with large variability among the experts. Conclusion The results demonstrate that quality ratings are prone to variability due to the ambiguity of tumor boundaries and individual perceptual differences, and existing metrics do not capture the clinical perception of segmentation quality. Keywords: Brain Tumor Segmentation, Deep Learning Algorithms, Glioblastoma, Cancer, Machine Learning Clinical trial registration nos. NCT00756106 and NCT00662506 Supplemental material is available for this article. © RSNA, 2023.


Assuntos
Neoplasias Encefálicas , Aprendizado Profundo , Glioblastoma , Humanos , Algoritmos , Benchmarking , Neoplasias Encefálicas/diagnóstico por imagem , Glioblastoma/diagnóstico por imagem
11.
iScience ; 27(1): 108589, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38169893

RESUMO

The heterogeneity inherent in cancer means that even a successful clinical trial merely results in a therapeutic regimen that achieves, on average, a positive result only in a subset of patients. The only way to optimize an intervention for an individual patient is to reframe their treatment as their own, personalized trial. Toward this goal, we formulate a computational framework for performing personalized trials that rely on four mathematical techniques. First, mathematical models that can be calibrated with patient-specific data to make accurate predictions of response. Second, digital twins built on these models capable of simulating the effects of interventions. Third, optimal control theory applied to the digital twins to optimize outcomes. Fourth, data assimilation to continually update and refine predictions in response to therapeutic interventions. In this perspective, we describe each of these techniques, quantify their "state of readiness", and identify use cases for personalized clinical trials.

12.
Med Phys ; 51(3): 2108-2118, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37633837

RESUMO

PURPOSE: The rising promise in the utility of advanced multi-parametric magnetic resonance (MR) imaging in radiotherapy (RT) treatment planning creates a necessity for testing and enhancing the accuracy of quantitative imaging analysis. Standardizing the analysis of diffusion weighted imaging (DWI) and diffusion tensor imaging (DTI) to generate meaningful and reproducible apparent diffusion coefficient (ADC) and fractional anisotropy (FA) lays the requisite needed for clinical integration. The aim of the demonstrated work is to benchmark the generation of the ADC and FA parametric map analyses using integrated tools in a commercial treatment planning system against the currently used ones. METHODS: Three software packages were used for generating ADC and FA maps in this study; one tool was developed within a commercial treatment planning system, another by the Functional Magnetic Resonance Imaging of the Brain (FMRIB) Software Library FSL (Analysis Group, FMRIB, Oxford, United Kingdom), and an in-house tool developed at the M.D. Anderson Cancer Center. The ADC and FA maps generated by all three packages for 35 subjects were subtracted from one another, and the standard deviation of the images' differences was used to compare the reproducibility. The reproducibility of the ADC maps was compared with the Quantitative Imaging Biomarkers Alliance (QIBA) protocol, while that of the FA maps was compared to data in published literature. RESULTS: Results show that the discrepancies between the ADC maps calculated for each patient using the three different software algorithms are less than 2% which meets the 3.6% recommended QIBA requirement. Except for a small number of isolated points, the majority of differences in FA maps for each patient produced by the three methods did not exceed 0.02 which is 10 times lower than the differences seen in healthy gray and white matter. The results were also compared to the maps generated by existing MR Imaging consoles and showed that the robustness of console generated ADC and FA maps is largely dependent on the correct application of scaling factors, that only if correctly placed; the differences between the three tested methods and the console generated values were within the recommended QIBA guidelines. CONCLUSIONS: Cross-comparison difference maps demonstrated that quantitative reproducibility of ADC and FA metrics generated using our tested commercial treatment planning system were comparable to in-house and established tools as benchmarks. This integrated approach facilitates the clinical utility of diffusion imaging in radiation treatment planning workflow.


Assuntos
Benchmarking , Imagem de Tensor de Difusão , Humanos , Imagem de Tensor de Difusão/métodos , Reprodutibilidade dos Testes , Imagem de Difusão por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética , Anisotropia
13.
Semin Radiat Oncol ; 34(1): 135-144, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38105088

RESUMO

Magnetic resonance image guided radiation therapy (MRIgRT) is a relatively new technology that has already shown outcomes benefits but that has not yet reached its clinical potential. The improved soft-tissue contrast provided with MR, coupled with the immediacy of image acquisition with respect to the treatment, enables expansion of on-table adaptive protocols, currently at a cost of increased treatment complexity, use of human resources, and longer treatment slot times, which translate to decreased throughput. Many approaches are being investigated to meet these challenges, including the development of artificial intelligence (AI) algorithms to accelerate and automate much of the workflow and improved technology that parallelizes workflow tasks, as well as improvements in image acquisition speed and quality. This article summarizes limitations of current available integrated MRIgRT systems and gives an outlook about scientific developments to further expand the use of MRIgRT.


Assuntos
Inteligência Artificial , Radioterapia Guiada por Imagem , Humanos , Radioterapia Guiada por Imagem/métodos , Imageamento por Ressonância Magnética/métodos , Algoritmos , Fluxo de Trabalho
14.
JCO Clin Cancer Inform ; 7: e2300136, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38055914

RESUMO

In August 2022, the Cancer Informatics for Cancer Centers brought together cancer informatics leaders for its biannual symposium, Precision Medicine Applications in Radiation Oncology, co-chaired by Quynh-Thu Le, MD (Stanford University), and Walter J. Curran, MD (GenesisCare). Over the course of 3 days, presenters discussed a range of topics relevant to radiation oncology and the cancer informatics community more broadly, including biomarker development, decision support algorithms, novel imaging tools, theranostics, and artificial intelligence (AI) for the radiotherapy workflow. Since the symposium, there has been an impressive shift in the promise and potential for integration of AI in clinical care, accelerated in large part by major advances in generative AI. AI is now poised more than ever to revolutionize cancer care. Radiation oncology is a field that uses and generates a large amount of digital data and is therefore likely to be one of the first fields to be transformed by AI. As experts in the collection, management, and analysis of these data, the informatics community will take a leading role in ensuring that radiation oncology is prepared to take full advantage of these technological advances. In this report, we provide highlights from the symposium, which took place in Santa Barbara, California, from August 29 to 31, 2022. We discuss lessons learned from the symposium for data acquisition, management, representation, and sharing, and put these themes into context to prepare radiation oncology for the successful and safe integration of AI and informatics technologies.


Assuntos
Neoplasias , Radioterapia (Especialidade) , Humanos , Inteligência Artificial , Informática , Neoplasias/diagnóstico , Neoplasias/radioterapia
15.
Artigo em Inglês | MEDLINE | ID: mdl-38100769

RESUMO

PURPOSE: To report a case of bilateral uveitis, retinal periphlebitis, and optic neuritis associated with a non-pineal central nervous system (CNS) germinoma. METHODS: Case report. RESULTS: A 32-year-old male presented with episodes of acute painless visual disturbance in each eye, and was found to have decreased visual acuity, abnormal color vision, an afferent pupillary defect in the left eye, bilateral optic disc edema, perivenous sheathing, and candle-wax dripping exudates. Optical coherence tomography revealed bilateral intraretinal fluid and posterior vitreous hyperreflective opacities. Fluorescein angiography revealed bilateral optic disc leakage without active small vessel leakage. Magnetic resonance imaging of the brain and orbits revealed enhancing periventricular lesions and enhancement of the left optic nerve and bilateral perioptic nerve sheaths, posterior globes, and optic nerve heads. Brain biopsy was consistent with a CNS germinoma. His ocular signs and symptoms improved with chemotherapy for the germinoma. CONCLUSION: CNS germinomas, including those located outside the pineal region, can be associated with optic neuritis, uveitis, and periphlebitis including characteristic candle-wax dripping exudates. Ocular signs and symptoms typically improve with treatment of the underlying germinoma.

16.
Front Immunol ; 14: 1249511, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37841255

RESUMO

Background: Immune checkpoint inhibitors (ICI) may cause pneumonitis, resulting in potentially fatal lung inflammation. However, distinguishing pneumonitis from pneumonia is time-consuming and challenging. To fill this gap, we build an image-based tool, and further evaluate it clinically alongside relevant blood biomarkers. Materials and methods: We studied CT images from 97 patients with pneumonia and 29 patients with pneumonitis from acute myeloid leukemia treated with ICIs. We developed a CT-derived signature using a habitat imaging algorithm, whereby infected lungs are segregated into clusters ("habitats"). We validated the model and compared it with a clinical-blood model to determine whether imaging can add diagnostic value. Results: Habitat imaging revealed intrinsic lung inflammation patterns by identifying 5 distinct subregions, correlating to lung parenchyma, consolidation, heterogenous ground-glass opacity (GGO), and GGO-consolidation transition. Consequently, our proposed habitat model (accuracy of 79%, sensitivity of 48%, and specificity of 88%) outperformed the clinical-blood model (accuracy of 68%, sensitivity of 14%, and specificity of 85%) for classifying pneumonia versus pneumonitis. Integrating imaging and blood achieved the optimal performance (accuracy of 81%, sensitivity of 52% and specificity of 90%). Using this imaging-blood composite model, the post-test probability for detecting pneumonitis increased from 23% to 61%, significantly (p = 1.5E - 9) higher than the clinical and blood model (post-test probability of 22%). Conclusion: Habitat imaging represents a step forward in the image-based detection of pneumonia and pneumonitis, which can complement known blood biomarkers. Further work is needed to validate and fine tune this imaging-blood composite model and further improve its sensitivity to detect pneumonitis.


Assuntos
Leucemia Mieloide Aguda , Pneumonia , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Pneumonia/diagnóstico por imagem , Pneumonia/tratamento farmacológico , Tomografia Computadorizada por Raios X , Inflamação/tratamento farmacológico , Biomarcadores , Leucemia Mieloide Aguda/tratamento farmacológico
17.
Neuroradiol J ; : 19714009231193162, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37559514

RESUMO

Multifocal and multicentric glioblastoma (GBM) or collectively, m-GBM, is an imaging diagnosis present in up to 34% of patients with GBM. Compared to unifocal disease, patients with m-GBM have worse outcomes owing to the enhanced aggressive nature of the disease and its resistance to currently available treatments. To improve the understanding of its complex behavior, many associations have been established between the radiologic findings of m-GBM and its gross histology, genetic composition, and patterns of spread. Additionally, the holistic knowledge of the exact mechanisms of m-GBM genesis and progression is crucial for identifying potential targets permitting enhanced diagnosis and treatment. In this review, we aim to provide a comprehensive summary of the cumulative knowledge of the unique molecular biology and behavior of m-GBM and the association of these features with neuroimaging.

18.
Lancet Oncol ; 24(8): e344-e354, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37541280

RESUMO

Brain metastases are an increasing global public health concern, even as survival rates improve for patients with metastatic disease. Both metastases and the sequelae of their treatment are key determinants of the inter-related priorities of patient survival, function, and quality of life, mandating a multidimensional approach to clinical care and research. At a virtual National Cancer Institute Workshop in September, 2022, key stakeholders convened to define research priorities to address the crucial areas of unmet need for patients with brain metastases to achieve meaningful advances in patient outcomes. This Policy Review outlines existing knowledge gaps, collaborative opportunities, and specific recommendations regarding consensus priorities and future directions in brain metastases research. Achieving major advances in research will require enhanced coordination between the ongoing efforts of individual organisations and consortia. Importantly, the continual and active engagement of patients and patient advocates will be necessary to ensure that the directionality of all efforts reflects what is most meaningful in the context of patient care.


Assuntos
Pesquisa Biomédica , Neoplasias Encefálicas , Estados Unidos , Humanos , Qualidade de Vida , National Cancer Institute (U.S.) , Consenso , Neoplasias Encefálicas/terapia
19.
Cancer Med ; 12(17): 17753-17765, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37592894

RESUMO

INTRODUCTION: Survivors of SARS-CoV-2 pneumonia often develop persistent respiratory symptom and interstitial lung abnormalities (ILAs) after infection. Risk factors for ILA development and duration of ILA persistence after SARS-CoV-2 infection are not well described in immunocompromised hosts, such as cancer patients. METHODS: We conducted a prospective cohort study of 95 patients at a major cancer center and 45 patients at a tertiary referral center. We collected clinical and radiographic data during the index hospitalization for COVID-19 pneumonia and measured pneumonia severity using a semi-quantitative radiographic score, the Radiologic Severity Index (RSI). Patients were evaluated in post-COVID-19 clinics at 3 and 6 months after discharge and underwent comprehensive pulmonary evaluations (symptom assessment, chest computed tomography, pulmonary function tests, 6-min walk test). The association of clinical and radiological factors with ILAs at 3 and 6 months post-discharge was measured using univariable and multivariable logistic regression. RESULTS: Sixty-six (70%) patients of cancer cohort had ILAs at 3 months, of whom 39 had persistent respiratory symptoms. Twenty-four (26%) patients had persistent ILA at 6 months after hospital discharge. In adjusted models, higher peak RSI at admission was associated with ILAs at 3 (OR 1.5 per 5-point increase, 95% CI 1.1-1.9) and 6 months (OR 1.3 per 5-point increase, 95% CI 1.1-1.6) post-discharge. Fibrotic ILAs (reticulation, traction bronchiectasis, and architectural distortion) were more common at 6 months post-discharge. CONCLUSIONS: Post-COVID-19 ILAs are common in cancer patients 3 months after hospital discharge, and peak RSI and older age are strong predictors of persistent ILAs.


Assuntos
COVID-19 , Neoplasias , Humanos , COVID-19/complicações , Estudos Prospectivos , Assistência ao Convalescente , SARS-CoV-2 , Alta do Paciente , Pulmão/diagnóstico por imagem , Hospitalização , Neoplasias/complicações , Neoplasias/epidemiologia
20.
J Immunother Cancer ; 11(7)2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37402581

RESUMO

BACKGROUND: Up to 20% of patients with non-small cell lung cancer (NSCLC) develop brain metastasis (BM), for which the current standard of care is radiation therapy with or without surgery. There are no prospective data on the safety of stereotactic radiosurgery (SRS) concurrent with immune checkpoint inhibitor therapy for BM. This is the safety cohort of the phase I/II investigator-initiated trial of SRS with nivolumab and ipilimumab for patients with BM from NSCLC. PATIENTS AND METHODS: This single-institution study included patients with NSCLC with active BM amenable to SRS. Brain SRS and systemic therapy with nivolumab and ipilimumab were delivered concurrently (within 7 days). The endpoints were safety and 4-month intracranial progression-free survival (PFS). RESULTS: Thirteen patients were enrolled in the safety cohort, 10 of whom were evaluable for dose-limiting toxicities (DLTs). Median follow-up was 23 months (range 9.7-24.3 months). The median interval between systemic therapy and radiation therapy was 3 days. Only one patient had a DLT; hence, predefined stopping criteria were not met. In addition to the patient with DLT, three patients had treatment-related grade ≥3 adverse events, including elevated liver function tests, fatigue, nausea, adrenal insufficiency, and myocarditis. One patient had a confirmed influenza infection 7 months after initiation of protocol treatment (outside the DLT assessment window), leading to pneumonia and subsequent death from hemophagocytic lymphohistiocytosis. The estimated 4-month intracranial PFS rate was 70.7%. CONCLUSION: Concurrent brain SRS with nivolumab/ipilimumab was safe for patients with active NSCLC BM. Preliminary analyses of treatment efficacy were encouraging for intracranial treatment response.


Assuntos
Neoplasias Encefálicas , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Radiocirurgia , Humanos , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/radioterapia , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Ipilimumab/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Nivolumabe/uso terapêutico , Radiocirurgia/métodos , Terapia Combinada/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA