Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Cells ; 47(1): 100005, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38376483

RESUMO

Amyotrophic lateral sclerosis is a devastating neurodegenerative disease with a complex genetic basis, presenting both in familial and sporadic forms. The hexanucleotide (G4C2) repeat expansion in the C9orf72 gene, which triggers distinct pathogenic mechanisms, has been identified as a major contributor to familial and sporadic Amyotrophic lateral sclerosis cases. Animal models have proven pivotal in understanding these mechanisms; however, discrepancies between models due to variable transgene sequence, expression levels, and toxicity profiles complicate the translation of findings. Herein, we provide a systematic comparison of 7 publicly available Drosophila transgenes modeling the G4C2 expansion under uniform conditions, evaluating variations in their toxicity profiles. Further, we tested 3 previously characterized disease-modifying drugs in selected lines to uncover discrepancies among the tested strains. Our study not only deepens our understanding of the C9orf72 G4C2 mutations but also presents a framework for comparing constructs with minute structural differences. This work may be used to inform experimental designs to better model disease mechanisms and help guide the development of targeted interventions for neurodegenerative diseases, thus bridging the gap between model-based research and therapeutic application.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Levamisol/análogos & derivados , Doenças Neurodegenerativas , Animais , Drosophila/genética , Esclerose Lateral Amiotrófica/genética , Proteína C9orf72/genética
2.
Analyst ; 149(3): 846-858, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38167886

RESUMO

Lipid alterations in the brain are well-documented in disease and aging, but our understanding of their pathogenic implications remains incomplete. Recent technological advances in assessing lipid profiles have enabled us to intricately examine the spatiotemporal variations in lipid compositions within the complex brain characterized by diverse cell types and intricate neural networks. In this study, we coupled time-of-flight secondary ion mass spectrometry (ToF-SIMS) to an amyotrophic lateral sclerosis (ALS) Drosophila model, for the first time, to elucidate changes in the lipid landscape and investigate their potential role in the disease process, serving as a methodological and analytical complement to our prior approach that utilized matrix-assisted laser desorption/ionization mass spectrometry. The expansion of G4C2 repeats in the C9orf72 gene is the most prevalent genetic factor in ALS. Our findings indicate that expressing these repeats in fly brains elevates the levels of fatty acids, diacylglycerols, and ceramides during the early stages (day 5) of disease progression, preceding motor dysfunction. Using RNAi-based genetic screening targeting lipid regulators, we found that reducing fatty acid transport protein 1 (FATP1) and Acyl-CoA-binding protein (ACBP) alleviates the retinal degeneration caused by G4C2 repeat expression and also markedly restores the G4C2-dependent alterations in lipid profiles. Significantly, the expression of FATP1 and ACBP is upregulated in G4C2-expressing flies, suggesting their contribution to lipid dysregulation. Collectively, our novel use of ToF-SIMS with the ALS Drosophila model, alongside methodological and analytical improvements, successfully identifies crucial lipids and related genetic factors in ALS pathogenesis.


Assuntos
Esclerose Lateral Amiotrófica , Animais , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Drosophila , Espectrometria de Massa de Íon Secundário , Lipídeos
3.
Mol Cells ; 45(11): 855-867, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36172977

RESUMO

For proper function of proteins, their subcellular localization needs to be monitored and regulated in response to the changes in cellular demands. In this regard, dysregulation in the nucleocytoplasmic transport (NCT) of proteins is closely associated with the pathogenesis of various neurodegenerative diseases. However, it remains unclear whether there exists an intrinsic regulatory pathway(s) that controls NCT of proteins either in a commonly shared manner or in a target-selectively different manner. To dissect between these possibilities, in the current study, we investigated the molecular mechanism regulating NCT of truncated ataxin-3 (ATXN3) proteins of which genetic mutation leads to a type of polyglutamine (polyQ) diseases, in comparison with that of TDP-43. In Drosophila dendritic arborization (da) neurons, we observed dynamic changes in the subcellular localization of truncated ATXN3 proteins between the nucleus and the cytosol during development. Moreover, ectopic neuronal toxicity was induced by truncated ATXN3 proteins upon their nuclear accumulation. Consistent with a previous study showing intracellular calcium-dependent NCT of TDP-43, NCT of ATXN3 was also regulated by intracellular calcium level and involves Importin α3 (Imp α3). Interestingly, NCT of ATXN3, but not TDP-43, was primarily mediated by CBP. We further showed that acetyltransferase activity of CBP is important for NCT of ATXN3, which may acetylate Imp α3 to regulate NCT of ATXN3. These findings demonstrate that CBP-dependent acetylation of Imp α3 is crucial for intracellular calcium-dependent NCT of ATXN3 proteins, different from that of TDP-43, in Drosophila neurons.


Assuntos
Drosophila , alfa Carioferinas , Animais , Acetilação , Transporte Ativo do Núcleo Celular , alfa Carioferinas/genética , alfa Carioferinas/metabolismo , Ataxina-3/genética , Ataxina-3/metabolismo , Cálcio/metabolismo , Drosophila/metabolismo , Neurônios/metabolismo
5.
J Am Soc Mass Spectrom ; 32(10): 2536-2545, 2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34448582

RESUMO

Amyotrophic lateral sclerosis (ALS) is a degenerative disease caused by motor neuron damage in the central nervous system, and it is difficult to diagnose early. Drosophila melanogaster is widely used to investigate disease mechanisms and discover biomarkers because it is easy to induce disease in Drosophila through genetic engineering. We performed matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) to investigate changes in phospholipid distribution in the brain tissue of an ALS-induced Drosophila model. Fly brain tissues of several hundred micrometers or less were sampled using a fly collar to obtain reproducible tissue sections of similar sizes. MSI of brain tissues of Drosophila cultured for 1 or 10 days showed that the distribution of phospholipids, including phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidic acid (PA), phosphatidylserine (PS), and phosphatidylinositol (PI), was significantly different between the control group and the ALS group. In addition, the lipid profile according to phospholipids differed as the culture time increased from 1 to 10 days. These results suggest that disease indicators based on lipid metabolites can be discovered by performing MALDI-MSI on very small brain tissue samples from the Drosophila disease model to ultimately assess the phospholipid changes that occur in early-stage ALS.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Imagem Molecular/métodos , Fosfolipídeos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Química Encefálica/fisiologia , Modelos Animais de Doenças , Drosophila melanogaster , Fosfolipídeos/análise , Fosfolipídeos/química
6.
Hum Mol Genet ; 30(12): 1084-1100, 2021 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-33783499

RESUMO

RNA-binding proteins (RBPs) play essential roles in diverse cellular processes through post-transcriptional regulation of RNAs. The subcellular localization of RBPs is thus under tight control, the breakdown of which is associated with aberrant cytoplasmic accumulation of nuclear RBPs such as TDP-43 and FUS, well-known pathological markers for amyotrophic lateral sclerosis and frontotemporal dementia (ALS/FTD). Here, we report in Drosophila model for ALS/FTD that nuclear accumulation of a cytoplasmic RBP Staufen may be a new pathological feature. We found that in Drosophila C4da neurons expressing PR36, one of the arginine-rich dipeptide repeat proteins (DPRs), Staufen accumulated in the nucleus in Importin- and RNA-dependent manner. Notably, expressing Staufen with exogenous NLS-but not with mutated endogenous NLS-potentiated PR-induced dendritic defect, suggesting that nuclear-accumulated Staufen can enhance PR toxicity. PR36 expression increased Fibrillarin staining in the nucleolus, which was enhanced by heterozygous mutation of stau (stau+/-), a gene that codes Staufen. Furthermore, knockdown of fib, which codes Fibrillarin, exacerbated retinal degeneration mediated by PR toxicity, suggesting that increased amount of Fibrillarin by stau+/- is protective. stau+/- also reduced the amount of PR-induced nuclear-accumulated Staufen and mitigated retinal degeneration and rescued viability of flies expressing PR36. Taken together, our data show that nuclear accumulation of Staufen in neurons may be an important pathological feature contributing to the pathogenesis of ALS/FTD.


Assuntos
Esclerose Lateral Amiotrófica/genética , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Demência Frontotemporal/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo F-H/genética , Proteínas de Ligação a RNA/genética , RNA/genética , Esclerose Lateral Amiotrófica/patologia , Animais , Arginina/genética , Proteína C9orf72/genética , Núcleo Celular/genética , Citoplasma/genética , Dipeptídeos/genética , Modelos Animais de Doenças , Drosophila melanogaster/genética , Demência Frontotemporal/patologia , Técnicas de Silenciamento de Genes , Humanos , Neurônios/metabolismo , Neurônios/patologia , Sinais de Localização Nuclear/genética , Processamento Pós-Transcricional do RNA/genética
7.
Elife ; 92020 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-33305734

RESUMO

Cytoplasmic accumulation of TDP-43 in motor neurons is the most prominent pathological feature in amyotrophic lateral sclerosis (ALS). A feedback cycle between nucleocytoplasmic transport (NCT) defect and TDP-43 aggregation was shown to contribute to accumulation of TDP-43 in the cytoplasm. However, little is known about cellular factors that can control the activity of NCT, thereby affecting TDP-43 accumulation in the cytoplasm. Here, we identified via FRAP and optogenetics cytosolic calcium as a key cellular factor controlling NCT of TDP-43. Dynamic and reversible changes in TDP-43 localization were observed in Drosophila sensory neurons during development. Genetic and immunohistochemical analyses identified the cytosolic calcium-Calpain-A-Importin α3 pathway as a regulatory mechanism underlying NCT of TDP-43. In C9orf72 ALS fly models, upregulation of the pathway activity by increasing cytosolic calcium reduced cytoplasmic accumulation of TDP-43 and mitigated behavioral defects. Together, these results suggest the calcium-Calpain-A-Importin α3 pathway as a potential therapeutic target of ALS.


Assuntos
Cálcio/metabolismo , Calpaína/metabolismo , Citoplasma/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , alfa Carioferinas/metabolismo , Transporte Ativo do Núcleo Celular/fisiologia , Esclerose Lateral Amiotrófica/metabolismo , Animais , Drosophila melanogaster , Neurônios/metabolismo
8.
Front Cell Neurosci ; 14: 556461, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33192307

RESUMO

Due to their enormous surface area compared to other cell types, neurons face unique challenges in properly handling supply and retrieval of the plasma membrane (PM)-a process termed PM turnover-in their distal areas. Because of the length and extensiveness of dendritic branches in neurons, the transport of materials needed for PM turnover from soma to distal dendrites will be inefficient and quite burdensome for somatic organelles. To meet local demands, PM turnover in dendrites most likely requires local cellular machinery, such as dendritic endocytic and secretory systems, dysregulation of which may result in dendritic pathology observed in various neurodegenerative diseases (NDs). Supporting this notion, a growing body of literature provides evidence to suggest the pathogenic contribution of dysregulated PM turnover to dendritic pathology in certain NDs. In this article, we present our perspective view that impaired dendritic endocytic and secretory systems may contribute to dendritic pathology by encumbering PM turnover in NDs.

9.
Mol Cells ; 43(10): 870-879, 2020 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-33115979

RESUMO

Dendrites require precise and timely delivery of protein substrates to distal areas to ensure the correct morphology and function of neurons. Many of these protein substrates are supplied in the form of ribonucleoprotein (RNP) complex consisting of RNA-binding proteins (RBPs) and mRNAs, which are subsequently translated in distal dendritic areas. It remains elusive, however, whether key RBPs supply mRNA according to local demands individually or in a coordinated manner. In this study, we investigated how Drosophila sensory neurons respond to the dysregulation of a disease-associated RBP, Ataxin-2 (ATX2), which leads to dendritic defects. We found that ATX2 plays a crucial role in spacing dendritic branches for the optimal dendritic receptive fields in Drosophila class IV dendritic arborization (C4da) neurons, where both expression level and subcellular location of ATX2 contribute significantly to this effect. We showed that translational upregulation through the expression of eukaryotic translation initiation factor 4E (eIF4E) further enhanced the ATX2-induced dendritic phenotypes. Additionally, we found that the expression level of another disease-associated RBP, fragile X mental retardation protein (FMRP), decreased in both cell bodies and dendrites when neurons were faced with aberrant upregulation of ATX2. Finally, we revealed that the PAM2 motif of ATX2, which mediates its interaction with poly(A)-binding protein (PABP), is potentially necessary for the decrease of FMRP in certain neuronal stress conditions. Collectively, our data suggest that dysregulation of RBPs triggers a compensatory regulation of other functionally-overlapping RBPs to minimize RBP dysregulation-associated aberrations that hinder neuronal homeostasis in dendrites.


Assuntos
Ataxina-2/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/embriologia , Proteína do X Frágil da Deficiência Intelectual/genética , Células Receptoras Sensoriais/metabolismo , Animais , Ataxina-2/metabolismo , Dendritos/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Fator de Iniciação 4E em Eucariotos/metabolismo , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Regulação da Expressão Gênica , Mutação , Regulação para Cima
10.
Antioxidants (Basel) ; 9(11)2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33126703

RESUMO

Advances in medicine and dietary standards over recent decades have remarkably increased human life expectancy. Unfortunately, the chance of developing age-related diseases, including neurodegenerative diseases (NDDs), increases with increased life expectancy. High metabolic demands of neurons are met by mitochondria, damage of which is thought to contribute to the development of many NDDs including Parkinson's disease (PD). Mitochondrial damage is closely associated with the abnormal production of reactive oxygen species (ROS), which are widely known to be toxic in various cellular environments, including NDD contexts. Thus, ways to prevent or slow mitochondrial dysfunction are needed for the treatment of these NDDs. In this review, we first detail how ROS are associated with mitochondrial dysfunction and review the cellular mechanisms, such as the mitochondrial quality control (MQC) system, by which neurons defend against both abnormal production of ROS and the subsequent accumulation of damaged mitochondria. We next highlight previous studies that link mitochondrial dysfunction with PD and how dietary antioxidants might provide reinforcement of the MQC system. Finally, we discuss how aging plays a role in mitochondrial dysfunction and PD before considering how healthy aging through proper diet and exercise may be salutary.

11.
Mol Cells ; 43(9): 821-830, 2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-32975212

RESUMO

Altered dendritic morphology is frequently observed in various neurological disorders including amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), but the cellular and molecular basis underlying these pathogenic dendritic abnormalities remains largely unclear. In this study, we investigated dendritic morphological defects caused by dipeptide repeat protein (DPR) toxicity associated with G4C2 expansion mutation of C9orf72 (the leading genetic cause of ALS and FTD) in Drosophila neurons and characterized the underlying pathogenic mechanisms. Among the five DPRs produced by repeat-associated non-ATG translation of G4C2 repeats, we found that arginine-rich DPRs (PR and GR) led to the most significant reduction in dendritic branches and plasma membrane (PM) supply in Class IV dendritic arborization (C4 da) neurons. Furthermore, expression of PR and GR reduced the number of Golgi outposts (GOPs) in dendrites. In Drosophila brains, expression of PR, but not GR, led to a significant reduction in the mRNA level of CrebA, a transcription factor regulating the formation of GOPs. Overexpressing CrebA in PR-expressing C4 da neurons mitigated PM supply defects and restored the number of GOPs, but the number of dendritic branches remained unchanged, suggesting that other molecules besides CrebA may be involved in dendritic branching. Taken together, our results provide valuable insight into the understanding of dendritic pathology associated with C9-ALS/FTD.


Assuntos
Arginina/metabolismo , Proteína C9orf72/metabolismo , Proteínas de Drosophila/metabolismo , Complexo de Golgi/metabolismo , Neurônios/metabolismo , Animais , Dipeptídeos/metabolismo , Drosophila
12.
PLoS One ; 15(9): e0239126, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32941465

RESUMO

Paclitaxel is a representative anticancer drug that induces chemotherapy-induced peripheral neuropathy (CIPN), a common side effect that limits many anticancer chemotherapies. Although PINK1, a key mediator of mitochondrial quality control, has been shown to protect neuronal cells from various toxic treatments, the role of PINK1 in CIPN has not been investigated. Here, we examined the effect of PINK1 expression on CIPN using a recently established paclitaxel-induced peripheral neuropathy model in Drosophila larvae. We found that the class IV dendritic arborization (C4da) sensory neuron-specific expression of PINK1 significantly ameliorated the paclitaxel-induced thermal hyperalgesia phenotype. In contrast, knockdown of PINK1 resulted in an increase in thermal hypersensitivity, suggesting a critical role for PINK1 in sensory neuron-mediated thermal nociceptive sensitivity. Interestingly, analysis of the C4da neuron morphology suggests that PINK1 expression alleviates paclitaxel-induced thermal hypersensitivity by means other than preventing alterations in sensory dendrites in C4da neurons. We found that paclitaxel induces mitochondrial dysfunction in C4da neurons and that PINK1 expression suppressed the paclitaxel-induced increase in mitophagy in C4da neurons. These results suggest that PINK1 mitigates paclitaxel-induced sensory dendrite alterations and restores mitochondrial homeostasis in C4da neurons and that improvement in mitochondrial quality control could be a promising strategy for the treatment of CIPN.


Assuntos
Antineoplásicos Fitogênicos/efeitos adversos , Proteínas de Drosophila/genética , Hiperalgesia/induzido quimicamente , Hiperestesia/induzido quimicamente , Paclitaxel/efeitos adversos , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Proteínas Serina-Treonina Quinases/genética , Animais , Modelos Animais de Doenças , Drosophila , Expressão Gênica , Técnicas de Silenciamento de Genes , Hiperalgesia/genética , Hiperalgesia/fisiopatologia , Hiperestesia/genética , Hiperestesia/fisiopatologia , Doenças do Sistema Nervoso Periférico/genética , Doenças do Sistema Nervoso Periférico/fisiopatologia , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/metabolismo , Células Receptoras Sensoriais/patologia
13.
Cell Mol Life Sci ; 75(17): 3159-3180, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29947927

RESUMO

Protein toxicity can be defined as all the pathological changes that ensue from accumulation, mis-localization, and/or multimerization of disease-specific proteins. Most neurodegenerative diseases manifest protein toxicity as one of their key pathogenic mechanisms, the details of which remain unclear. By systematically deconstructing the nature of toxic proteins, we aim to elucidate and illuminate some of the key mechanisms of protein toxicity from which therapeutic insights may be drawn. In this review, we focus specifically on protein toxicity from the point of view of various cellular compartments such as the nucleus and the mitochondria. We also discuss the cell-to-cell propagation of toxic disease proteins that complicates the mechanistic understanding of the disease progression as well as the spatiotemporal point at which to therapeutically intervene. Finally, we discuss selective neuronal vulnerability, which still remains largely enigmatic.


Assuntos
Doenças Neurodegenerativas/metabolismo , Proteínas/metabolismo , Animais , Núcleo Celular/metabolismo , Progressão da Doença , Humanos , Mitocôndrias/metabolismo , Neurônios/metabolismo
14.
Cell Rep ; 20(2): 356-369, 2017 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-28700938

RESUMO

Dendrite aberration is a common feature of neurodegenerative diseases caused by protein toxicity, but the underlying mechanisms remain largely elusive. Here, we show that nuclear polyglutamine (polyQ) toxicity resulted in defective terminal dendrite elongation accompanied by a loss of Golgi outposts (GOPs) and a decreased supply of plasma membrane (PM) in Drosophila class IV dendritic arborization (da) (C4 da) neurons. mRNA sequencing revealed that genes downregulated by polyQ proteins included many secretory pathway-related genes, including COPII genes regulating GOP synthesis. Transcription factor enrichment analysis identified CREB3L1/CrebA, which regulates COPII gene expression. CrebA overexpression in C4 da neurons restores the dysregulation of COPII genes, GOP synthesis, and PM supply. Chromatin immunoprecipitation (ChIP)-PCR revealed that CrebA expression is regulated by CREB-binding protein (CBP), which is sequestered by polyQ proteins. Furthermore, co-overexpression of CrebA and Rac1 synergistically restores the polyQ-induced dendrite pathology. Collectively, our results suggest that GOPs impaired by polyQ proteins contribute to dendrite pathology through the CBP-CrebA-COPII pathway.


Assuntos
Dendritos/metabolismo , Dendritos/patologia , Complexo de Golgi/efeitos dos fármacos , Complexo de Golgi/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Peptídeos/toxicidade , Animais , Proteína de Ligação a CREB/metabolismo , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Imunoprecipitação da Cromatina , Proteína A de Ligação a Elemento de Resposta do AMP Cíclico/metabolismo , Dendritos/efeitos dos fármacos , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Neurônios/efeitos dos fármacos
15.
Mol Cells ; 40(4): 280-290, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28359145

RESUMO

Several lines of evidence suggest that endoplasmic reticulum (ER) stress plays a critical role in the pathogenesis of many neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. Protein tyrosine phosphatase 1B (PTP1B) is known to regulate the ER stress signaling pathway, but its role in neuronal systems in terms of ER stress remains largely unknown. Here, we showed that rotenone-induced toxicity in human neuroblastoma cell lines and mouse primary cortical neurons was ameliorated by PTP1B inhibition. Moreover, the increase in the level of ER stress markers (eIF2α phosphorylation and PERK phosphorylation) induced by rotenone treatment was obviously suppressed by concomitant PTP1B inhibition. However, the rotenone-induced production of reactive oxygen species (ROS) was not affected by PTP1B inhibition, suggesting that the neuroprotective effect of the PTP1B inhibitor is not associated with ROS production. Moreover, we found that MG132-induced toxicity involving proteasome inhibition was also ameliorated by PTP1B inhibition in a human neuroblastoma cell line and mouse primary cortical neurons. Consistently, downregulation of the PTP1B homologue gene in Drosophila mitigated rotenone- and MG132-induced toxicity. Taken together, these findings indicate that PTP1B inhibition may represent a novel therapeutic approach for ER stress-mediated neurodegenerative diseases.


Assuntos
Estresse do Retículo Endoplasmático/efeitos dos fármacos , Doenças Neurodegenerativas/enzimologia , Neurônios/efeitos dos fármacos , Neuroproteção , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , Animais , Morte Celular , Córtex Cerebral/enzimologia , Regulação para Baixo , Drosophila/enzimologia , Fator de Iniciação 2 em Eucariotos/efeitos dos fármacos , Humanos , Leupeptinas/farmacologia , Camundongos , Neurônios/enzimologia , Fosforilação , Espécies Reativas de Oxigênio/metabolismo , Rotenona/farmacologia , Células Tumorais Cultivadas , Desacopladores/farmacologia , eIF-2 Quinase/efeitos dos fármacos
16.
Biochem Biophys Res Commun ; 463(1-2): 1-6, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25979357

RESUMO

Parkin, an E3 ubuquitin ligase associated with Parkinson's disease (PD), has recently been implicated in mediating innate immunity. However, molecular details regarding parkin-mediated immune response remain to be elucidated. Here, we identified mitochondrial TSPO-VDAC complex to genetically interact with parkin in mediating responses against infection and wound in Drosophila. The loss-of-function mutation in parkin results in defective immune response against bacterial infection. Additionally, parkin mutant larvae showed hypersensitivity against wound regardless of bacterial infection. Interestingly, the combinatorial trans-heterozygotic mutations in parkin and TSPO, or parkin and VDAC showed similar lethal tendency with parkin homozygous mutants. Furthermore, knockdown of TSPO alone also resulted in defective responses to infection and wound analogously to parkin mutants. Taken together, we propose that parkin cooperates with TSPO-VDAC complex to mediate responses against infection and wound.


Assuntos
Proteínas de Drosophila/imunologia , Drosophila melanogaster/imunologia , Ubiquitina-Proteína Ligases/imunologia , Animais , Animais Geneticamente Modificados , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Técnicas de Silenciamento de Genes , Genes de Insetos , Imunidade Inata/genética , Infecções/genética , Infecções/imunologia , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/imunologia , Mutação , Receptores de GABA/imunologia , Ubiquitina-Proteína Ligases/genética , Canais de Ânion Dependentes de Voltagem/imunologia , Ferimentos e Lesões/genética , Ferimentos e Lesões/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA