Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Bioengineering (Basel) ; 9(10)2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36290481

RESUMO

The surfaces of 3D printed titanium prostheses have major impacts on the clinical performance of the prostheses. To investigate the surface effects of the products generated by 3D printed titanium on osseointegration, six surface types of titanium discs produced by the direct metal laser sintering (DMLS) and electron beam melting (EBM) methods, with two sizes of titanium particles and post-printing acid etching, were used to examine the surface topography and to explore the protein adsorption, pro-inflammatory cytokine gene expressions, and MC3T3-E1 cell adhesion, proliferation, and differentiation. The EBM-printed disc showed a stripy and smooth surface without evidence of the particles used, while the DMLS surface contained many particles. After acid etching, small particles on the DMLS surface were removed, whereas the large particles were left. Moreover, distinct proteins with low molecular weights were attached to the 3D printed titanium discs but not to the pre-printing titanium particles. The small titanium particles stimulated the highest TNF-α and IL-6 gene expressions at 24 h. The alizarin red content and osteocalcin gene expression at day 21 were the highest in the groups of acid-etched discs printed by DMLS with the small particles and by EBM. Therefore, the acid-treated surfaces without particles favor osteogenic differentiation. The surface design of 3D printed titanium prostheses should be based on their clinical applications.

2.
Sci Rep ; 6: 22752, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-26948248

RESUMO

This article presents a novel technique to estimate the mechanical properties of the aluminum composite layer on silicon solar cells by using a hybrid 3-dimensional laser scanning force measurement (3-D LSFM) system. The 3-D LSFM system measures the material properties of sub-layers constituting a solar cell. This measurement is critical for realizing high-efficient ultra-thin solar cells. The screen-printed aluminum layer, which significantly affects the bowing phenomenon, is separated from the complete solar cell by removing the silicon (Si) layer with deep reactive ion etching. An elastic modulus of ~15.1 GPa and a yield strength of ~35.0 MPa for the aluminum (Al) composite layer were obtained by the 3-D LSFM system. In experiments performed for 6-inch Si solar cells, the bowing distances decreased from 12.02 to 1.18 mm while the Si layer thicknesses increased from 90 to 190 µm. These results are in excellent agreement with the theoretical predictions for ultra-thin Si thickness (90 µm) based on the obtained Al composite layer properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA