Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
BMC Plant Biol ; 24(1): 436, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38773361

RESUMO

BACKGROUND: E2F/DP (Eukaryotic 2 transcription factor/dimerization partner) family proteins play an essential function in the cell cycle development of higher organisms. E2F/DP family genes have been reported only in a few plant species. However, comprehensive genome-wide characterization analysis of the E2F/DP gene family of Solanum lycopersicum has not been reported so far. RESULTS: This study identified eight nonredundant SlE2F/DP genes that were classified into seven groups in the phylogenetic analysis. All eight genes had a single E2F-TDP domain and few genes had additional domains. Two segmental duplication gene pairs were observed within tomato, in addition to cis-regulatory elements, miRNA target sites and phosphorylation sites which play an important role in plant development and stress response in tomato. To explore the three-dimensional (3D) models and gene ontology (GO) annotations of SlE2F/DP proteins, we pointed to their putative transporter activity and their interaction with several putative ligands. The localization of SlE2F/DP-GFP fused proteins in the nucleus and endoplasmic reticulum suggested that they may act in other biological functions. Expression studies revealed the differential expression pattern of most of the SlE2F/DP genes in various organs. Moreover, the expression of E2F/DP genes against abiotic stress, particularly SlE2F/DP2 and/or SlE2F/DP7, was upregulated in response to heat, salt, cold and ABA treatment. Furthermore, the co-expression analysis of SlE2F/DP genes with multiple metabolic pathways was co-expressed with defence genes, transcription factors and so on, suggested their crucial role in various biological processes. CONCLUSIONS: Overall, our findings provide a way to understand the structure and function of SlE2F/DP genes; it might be helpful to improve fruit development and tolerance against abiotic stress through marker-assisted selection or transgenic approaches.


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Solanum lycopersicum , Estresse Fisiológico , Solanum lycopersicum/genética , Solanum lycopersicum/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Família Multigênica , Filogenia , Genoma de Planta , Fatores de Transcrição E2F/genética , Fatores de Transcrição E2F/metabolismo
2.
Plant Methods ; 20(1): 20, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38308305

RESUMO

The study aimed to edit ethylene (ET) biosynthesis genes [1-aminocyclopropane-1-carboxylic acid (ACC) synthetase 1 (ACS1) and ACC oxidase 1 (ACO1)] in carnation using the CRISPR/Cas9 ribonucleoprotein (RNP) complex system. Initially, the conserved regions of the target genes (ACS1 and ACO1) were validated for the generation of different single guide RNAs (sgRNAs), followed by the use of an in vitro cleavage assay to confirm the ability of the sgRNAs to cleave the target genes specifically. The in vitro cleavage assay revealed that the sgRNAs were highly effective in cleaving their respective target regions. The complex of sgRNA: Cas9 was directly delivered into the carnation protoplast, and the target genes in the protoplast were deep-sequenced. The results revealed that the sgRNAs were applicable for editing the ET biosynthesis genes, as the mutation frequency ranged from 8.8 to 10.8% for ACO1 and 0.2-58.5% for ACS1. When sequencing the target genes in the callus derived from the protoplasts transformed with sgRNA: Cas9, different indel patterns (+ 1, - 1, and - 8 bp) in ACO1 and (- 1, + 1, and + 11) in ACS1 were identified. This study highlighted the potential application of CRISPR/Cas9 RNP complex system in facilitating precise gene editing for ET biosynthesis in carnation.

3.
Plant Cell Rep ; 43(2): 41, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38246942

RESUMO

KEY MESSAGE: CRISPR/Cas9-edited TOMATO AGAMOUS-LIKE1 (TAGL1) provided new insights into fruit ripening. TOMATO AGAMOUS LIKE 1 (TAGL1) has been identified as playing a key role in the process of tomato fruit development and ripening. We have re-evaluated the functions of TAGL1 using CRISPR/Cas9 mutagenesis. Three KO mutants contained frameshift mutations resulting in premature termination codons due to a 1 bp insertion. TAGL1-KO mutants exhibited dark immature fruits and orange ripening fruits. The fruit shape was characterized by a prominent pointed tip at the end and the pericarp thickness was significantly thinner. TAGL1-KO mutants showed reduced ethylene biosynthesis, increased firmness, and delayed onset of ripening. The chlorophyll content of TAGL1-KO mutants was higher in the mature green stage and the lycopene content of TAGL1-KO mutants in the ripening stage was lower compared to the WT. ACS2, ACS4, ACO1, ACO3, PG2a, PL, PME, EXP1, and PSY1 in the mutants were significantly down-regulated during ripening. Ripening fruits in the double mutant of rin and tagl1 showed a more extreme phenotype than the rin mutant suggesting that the double mutation acts synergistically during ripening. TAGL1-targeted mutagenesis by CRISPR/Cas9 strengthens its regulatory functions controlling ripening parameters and provides new insights into fruit ripening.


Assuntos
Solanum lycopersicum , Solanum lycopersicum/genética , Frutas/genética , Sistemas CRISPR-Cas/genética , Mutagênese/genética , Mutação/genética
4.
PLoS One ; 18(6): e0286425, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37262054

RESUMO

This study aimed to measure unmet healthcare needs and investigate the factors affecting them in female baby boomers (individuals born between 1955 and 1963) using the Korea Health Panel Data 2017 from February to June 2017 by the Korea Institute for Health and Social Affairs and the National Health Insurance Corporation. The data were analyzed using descriptive statistics, chi-square test, t-test, and multiple logistic regression using SPSS WIN 25.0 program. The results showed that the proportion of unmet healthcare needs was 11.1%, and the primary reason for unmet healthcare needs was the lack of visitation time. Female baby boomers experienced more unmet healthcare needs when they had no spouse (1.63 times), eating problems (2.33 times), and stress (1.31 times). This study is significant because it measured the unmet healthcare needs of women in the baby boomer generation and identified the factors influencing unmet healthcare needs. The study's results can help provide essential data to decrease the unmet healthcare needs of female baby boomers.


Assuntos
Atenção à Saúde , Necessidades e Demandas de Serviços de Saúde , Humanos , Feminino , Modelos Logísticos , Instalações de Saúde , República da Coreia
5.
Plant Physiol ; 192(2): 1289-1306, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-36715630

RESUMO

Carotenoids and apocarotenoids function as pigments and flavor volatiles in plants that enhance consumer appeal and offer health benefits. Tomato (Solanum lycopersicum.) fruit, especially those of wild species, exhibit a high degree of natural variation in carotenoid and apocarotenoid contents. Using positional cloning and an introgression line (IL) of Solanum habrochaites "LA1777', IL8A, we identified carotenoid cleavage dioxygenase 4 (CCD4) as the factor responsible for controlling the dark orange fruit color. CCD4b expression in ripe fruit of IL8A plants was ∼8,000 times greater than that in the wild type, presumably due to 5' cis-regulatory changes. The ShCCD4b-GFP fusion protein localized in the plastid. Phytoene, ζ-carotene, and neurosporene levels increased in ShCCD4b-overexpressing ripe fruit, whereas trans-lycopene, ß-carotene, and lutein levels were reduced, suggestive of feedback regulation in the carotenoid pathway by an unknown apocarotenoid. Solid-phase microextraction-gas chromatography-mass spectrometry analysis showed increased levels of geranylacetone and ß-ionone in ShCCD4b-overexpressing ripe fruit coupled with a ß-cyclocitral deficiency. In carotenoid-accumulating Escherichia coli strains, ShCCD4b cleaved both ζ-carotene and ß-carotene at the C9-C10 (C9'-C10') positions to produce geranylacetone and ß-ionone, respectively. Exogenous ß-cyclocitral decreased carotenoid synthesis in the ripening fruit of tomato and pepper (Capsicum annuum), suggesting feedback inhibition in the pathway. Our findings will be helpful for enhancing the aesthetic and nutritional value of tomato and for understanding the complex regulatory mechanisms of carotenoid and apocarotenoid biogenesis.


Assuntos
Dioxigenases , Solanum lycopersicum , Solanum lycopersicum/genética , beta Caroteno/metabolismo , zeta Caroteno/análise , zeta Caroteno/metabolismo , Dioxigenases/genética , Dioxigenases/metabolismo , Carotenoides/metabolismo , Frutas/metabolismo
6.
Protoplasma ; 260(1): 271-280, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35622155

RESUMO

The protocol optimized for Petunia hybrida cv. Mirage Rose produced high protoplast yields in 3 out of other 11 cultivars (Damask White, Dreams White, and Opera Supreme White). Factors optimized in the protoplast transfection process showed that the best transfection efficiency (80%) was obtained using 2.5 × 105 protoplast density, 40% polyethylene glycol (PEG) concentration, 10 µg plasmid DNA, and 15 min of transfection time. Assessing the usability of the protocol for other cultivars (Damask White, Dreams White, and Opera Supreme White), a reasonable protoplast transfection efficiency (⁓50%) was observed in the cultivars Dreams White and Opera Supreme White, with lower efficiency (⁓50%) observed in the cv. Damask White. The transient expression of enhanced green fluorescent protein (eGFP) in the nucleus of the transfected protoplasts of all cultivars was confirmed using PCR. This system could be valuable for genome editing of unwanted genes in petunias using the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) technology. Furthermore, it could contribute to other studies on protein subcellular localization, protein-protein interactions, and functional gene expression in the petunias.


Assuntos
Sistemas CRISPR-Cas , Petunia , Petunia/genética , Protoplastos , Edição de Genes/métodos , Expressão Gênica
7.
Plants (Basel) ; 11(22)2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36432841

RESUMO

PLATZ (plant AT-rich sequence and zinc-binding) family proteins with two conserved zinc-dependent DNA-binding motifs are transcription factors specific to the plant kingdom. The functions of PLATZ proteins in growth, development, and adaptation to multiple abiotic stresses have been investigated in various plant species, but their role in tomato has not been explored yet. In the present work, 20 non-redundant Solanum lycopersicum PLATZ (SlPLATZ) genes with three segmentally duplicated gene pairs and four tandemly duplicated gene pairs were identified on eight tomato chromosomes. The comparative modeling and gene ontology (GO) annotations of tomato PLATZ proteins indicated their probable roles in defense response, transcriptional regulation, and protein metabolic processes as well as their binding affinity for various ligands, including nucleic acids, peptides, and zinc. SlPLATZ10 and SlPLATZ17 were only expressed in 1 cm fruits and flowers, respectively, indicating their preferential involvement in the development of these organs. The expression of SlPLATZ1, SlPLATZ12, and SlPLATZ19 was up- or down-regulated following exposure to various abiotic stresses, whereas that of SlPLATZ11 was induced under temperature stresses (i.e., cold and heat stress), revealing their probable function in the abiotic stress tolerance of tomato. Weighted gene co-expression network analysis corroborated the aforementioned findings by spotlighting the co-expression of several stress-associated genes with SlPLATZ genes. Confocal fluorescence microscopy revealed the localization of SlPLATZ−GFP fusion proteins in the nucleus, hinting at their functions as transcription factors. These findings provide a foundation for a better understanding of the structure and function of PLATZ genes and should assist in the selection of potential candidate genes involved in the development and abiotic stress adaptation in tomato.

8.
Cells ; 11(20)2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36291065

RESUMO

The role of acdS, which encodes the 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase enzyme, in extending flower longevity and improving tolerance to cadmium (Cd) stress was assessed using transgenic Petunia hybrida cv. 'Mirage Rose' overexpressing acdS and wild-type (WT) plants. The overexpression of acdS reduced ethylene production in floral tissue via suppression of ethylene-related genes and improved flower longevity, approximately 2 to 4 days longer than WT flowers. Under Cd stress, acdS significantly reduced Cd-induced ethylene production in vegetable tissues of transgenic plants through suppression of ethylene-related genes. This resulted in a lower accumulation of ethylene-induced reactive oxygen species (ROS) in the transgenic plants than in WT plants. In addition, expression of the genes involved in the activities of antioxidant and proline synthesis as well as the metal chelation process was also higher in the former than in the latter. Moreover, Cd accumulation was significantly higher in WT plants than in the transgenic plants. These results are linked to the greater tolerance of transgenic plants to Cd stress than the WT plants, which was determined based on plant growth and physiological performance. These results highlight the potential applicability of using acdS to extend flower longevity of ornamental bedding plants and also reveal the mechanism by which acdS improves Cd-stress tolerance. We suggest that acdS overexpression in plants can extend flower longevity and also help reduce the negative impact of Cd-induced ethylene on plant growth when the plants are unavoidably cultivated in Cd-contaminated soil.


Assuntos
Cádmio , Petunia , Cádmio/toxicidade , Petunia/genética , Espécies Reativas de Oxigênio , Antioxidantes/metabolismo , Etilenos/metabolismo , Flores/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Prolina , Solo
9.
Int J Mol Sci ; 23(20)2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36293082

RESUMO

HVA22 family proteins with a conserved TB2/DP1/HVA22 domain are ubiquitous in eukaryotes. HVA22 family genes have been identified in a variety of plant species. However, there has been no comprehensive genome-wide analysis of HVA22 family genes in tomato (Solanum lycopersicum L.). Here, we identified 15 non-redundant SlHVA22 genes with three segmentally duplicated gene pairs on 8 of the 12 tomato chromosomes. The predicted three-dimensional (3D) models and gene ontology (GO) annotations of SlHVA22 proteins pointed to their putative transporter activity and ability to bind to diverse ligands. The co-expression of SlHVA22 genes with various genes implicated in multiple metabolic pathways and the localization of SlHVA22-GFP fused proteins to the endoplasmic reticulum suggested that they might have a variety of biological functions, including vesicular transport in stressed cells. Comprehensive expression analysis revealed that SlHVA22 genes were differentially expressed in various organs and in response to abiotic stress conditions. The predominant expression of SlHVA22i at the ripening stage and that of SlHVA22g, SlHVA22k, and SlHVA22l in fruits at most developmental stages suggested their probable involvement in tomato fruit development and ripening. Moreover, the transcript expression of most tomato HVA22 genes, particularly SlHVA22b, SlHVA22i, SlHVA22k, SlHVA22l, SlHVA22m, and SlHVA22n, was affected by abscisic acid (ABA) and diverse abiotic stress treatments, indicating the likely involvement of these genes in tomato abiotic stress responses in an ABA-dependent manner. Overall, our findings provide a foundation to better understand the structures and functional roles of SlHVA22 genes, many of which might be useful to improve the abiotic stress tolerance and fruit quality of tomato through marker-assisted backcrossing or transgenic approaches.


Assuntos
Solanum lycopersicum , Solanum lycopersicum/metabolismo , Ácido Abscísico/metabolismo , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico/genética , Genoma de Planta , Família Multigênica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Perfilação da Expressão Gênica , Filogenia
10.
Plant Cell Rep ; 41(11): 2201-2211, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35988098

RESUMO

KEY MESSAGE: Overexpression of acdS in petunia negatively affects seed germination by suppression of ethylene biosynthesis and signaling genes and induction of abscisic acid biosynthesis genes in the seeds. The acdS gene, which encodes 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase, has been overexpressed in horticultural crops to improve their tolerance to abiotic stress. However, the role of acdS in the germination of crop seeds has not been investigated, despite its suppression of ethylene production. In this study, acdS overexpression significantly reduced seed weight and germination rate in transgenic petunia cv. Merage Rose (T5, T7, and T12) relative to wild type via the suppression of ethylene biosynthesis and signaling genes and induction of abscisic acid (ABA) biosynthesis genes. The germination rate of T7 was significantly lower than those of T5 and T12, which was linked to higher expression of acdS in the former than the latter. The addition of exogenous ACC and gibberellic acid (GA3) to the germination medium improved the germination rate of T5 seeds and GA3 promoted the germination rate of T12 seeds. However, neither ACC nor GA3 promoted the germination rate of T7 seeds. The improved germination rates in T5 and T12 were associated with the transcriptional regulation of ethylene biosynthesis genes, particularly that of the ACO1 gene, signaling genes, and ABA biosynthesis genes. In this study, we discovered a negative role of acdS in seed germination in petunia. Thus, we highlight the need to consider the negative effect of acdS on seed germination when overexpressing the gene in horticultural crops to improve tolerance to abiotic stress.


Assuntos
Germinação , Petunia , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Petunia/genética , Petunia/metabolismo , Sementes/metabolismo , Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas/genética
11.
Front Plant Sci ; 13: 844449, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35283920

RESUMO

Ethylene plays a critical signaling role in the abiotic stress tolerance mechanism. However, the role of ethylene in regulating abiotic stress tolerance in petunia has not been well-investigated, and the underlying molecular mechanism by which ethylene regulates abiotic stress tolerance is still unknown. Therefore, we examined the involvement of ethylene in salt and drought stress tolerance of petunia using the petunia wild type cv. "Merage Rose" and the ethylene biosynthesis genes (PhACO1 and PhACO3)-edited mutants (phaco1 and phaco3). Here, we discovered that editing PhACO1 and PhACO3 reduced ethylene production in the mutants, and mutants were more sensitive to salt and drought stress than the wild type (WT). This was proven by the better outcomes of plant growth and physiological parameters and ion homeostasis in WT over the mutants. Molecular analysis revealed that the expression levels of the genes associated with antioxidant, proline synthesis, ABA synthesis and signaling, and ethylene signaling differed significantly between the WT and mutants, indicating the role of ethylene in the transcriptional regulation of the genes associated with abiotic stress tolerance. This study highlights the involvement of ethylene in abiotic stress adaptation and provides a physiological and molecular understanding of the role of ethylene in abiotic stress response in petunia. Furthermore, the finding alerts researchers to consider the negative effects of ethylene reduction on abiotic stress tolerance when editing the ethylene biosynthesis genes to improve the postharvest quality of horticultural crops.

12.
BMC Plant Biol ; 21(1): 530, 2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34772358

RESUMO

BACKGROUND: Alba (Acetylation lowers binding affinity) proteins are an ancient family of nucleic acid-binding proteins that function in gene regulation, RNA metabolism, mRNA translatability, developmental processes, and stress adaptation. However, comprehensive bioinformatics analysis on the Alba gene family of Solanum lycopersicum has not been reported previously. RESULTS: In the present study, we undertook the first comprehensive genome-wide characterization of the Alba gene family in tomato (Solanum lycopersicum L.). We identified eight tomato Alba genes, which were classified into two groups: genes containing a single Alba domain and genes with a generic Alba domain and RGG/RG repeat motifs. Cis-regulatory elements and target sites for miRNAs, which function in plant development and stress responses, were prevalent in SlAlba genes. To explore the structure-function relationships of tomato Alba proteins, we predicted their 3D structures, highlighting their likely interactions with several putative ligands. Confocal microscopy revealed that SlAlba-GFP fusion proteins were localized to the nucleus and cytoplasm, consistent with putative roles in various signalling cascades. Expression profiling revealed the differential expression patterns of most SlAlba genes across diverse organs. SlAlba1 and SlAlba2 were predominantly expressed in flowers, whereas SlAlba5 expression peaked in 1 cm-diameter fruits. The SlAlba genes were differentially expressed (up- or downregulated) in response to different abiotic stresses. All but one of these genes were induced by abscisic acid treatment, pointing to their possible regulatory roles in stress tolerance via an abscisic acid-dependent pathway. Furthermore, co-expression of SlAlba genes with multiple genes related to several metabolic pathways spotlighted their crucial roles in various biological processes and signalling. CONCLUSIONS: Our characterization of SlAlba genes should facilitate the discovery of additional genes associated with organ and fruit development as well as abiotic stress adaptation in tomato.


Assuntos
Frutas/metabolismo , Proteínas de Plantas/metabolismo , Solanum lycopersicum/metabolismo , Frutas/genética , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/genética , Proteínas de Plantas/genética , Estresse Fisiológico/genética , Estresse Fisiológico/fisiologia
13.
Artigo em Inglês | MEDLINE | ID: mdl-34639648

RESUMO

The purpose of this study was to investigate the relationships among burden, depression, awareness of information (AIC), and safety behavior among hemodialysis patients in Korea during the COVID-19 pandemic. The study participants included 149 patients who received hemodialysis at seven general hospitals in Korea between January and February 2021. A structured questionnaire was used to survey their levels of burden, depression, AIC, adherent safety behavior (ASB), and dysfunctional safety behavior (DSB). The study results showed that the influencing factors of ASB for COVID-19 were AIC (ß = 0.265, p < 0.001), the burden of "not receiving hemodialysis on time" (ß = 0.233, p = 0.008), and the burden of "social exclusion of hemodialysis patients" (ß = 0.186, p = 0.032). The influencing factors of DSB were the burden of "social exclusion of hemodialysis patients" (ß = 0.258, p = 0.003) and AIC (ß = 0.217, p = 0.004). As the COVID-19 pandemic continues, the latest evidence-based information must be provided to hemodialysis patients to promote self-care and prevention behavior that encourages ASB and discourages DSB.


Assuntos
COVID-19 , Pandemias , Depressão/epidemiologia , Humanos , Diálise Renal/efeitos adversos , República da Coreia/epidemiologia , SARS-CoV-2
14.
BMC Genomics ; 22(1): 727, 2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34620088

RESUMO

BACKGROUND: CONSTANS-like (CO-like, COL) are putative zinc-finger transcription factors known to play vital role in various plant biological processes such as control of flowering time, regulation of plant growth and development and responses to stresses. However, no systematic analysis of COL family gene regarding the plant development and stress response has been previously performed in any solanaceous crop. In the present study, a comprehensive genome-wide analysis of COL family genes in petunia has been conducted to figure out their roles in development of organs and stress response. RESULTS: A total of 33 COL genes, 15 PaCOL genes in P. axillaris and 18 PiCOL genes in P. inflata, were identified in petunia. Subsequently, a genome-wide systematic analysis was performed in 15 PaCOL genes. Considering the domain composition and sequence similarity the 15 PaCOL and 18 PiCOL genes were phylogenetically classified into three groups those are conserved among the flowering plants. Moreover, all of the 15 PaCOL proteins were localized in nucleus. Furthermore, differential expression patterns of PaCOL genes were observed at different developmental stages of petunia. Additionally, transcript expression of 15 PaCOL genes under various abiotic and phytohormone treatments showed their response against stresses. Moreover, several cis-elements related to stress, light-responsive, hormone signaling were also detected in different PaCOL genes. CONCLUSION: The phylogenetic clustering, organ specific expression pattern and stress responsive expression profile of conserved petunia COL genes indicating their involvement in plant growth and development and stress response mechanism. This work provide a significant foundation for understanding the biological roles of petunia COL genes in plant growth, development and in stress response.


Assuntos
Petunia , Regulação da Expressão Gênica de Plantas , Genômica , Petunia/genética , Petunia/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética
15.
Genes (Basel) ; 12(1)2020 12 25.
Artigo em Inglês | MEDLINE | ID: mdl-33375673

RESUMO

Protein disulfide isomerases (PDI) and PDI-like proteins catalyze the formation and isomerization of protein disulfide bonds in the endoplasmic reticulum and prevent the buildup of misfolded proteins under abiotic stress conditions. In the present study, we conducted the first comprehensive genome-wide exploration of the PDI gene family in tomato (Solanum lycopersicum L.). We identified 19 tomato PDI genes that were unevenly distributed on 8 of the 12 tomato chromosomes, with segmental duplications detected for 3 paralogous gene pairs. Expression profiling of the PDI genes revealed that most of them were differentially expressed across different organs and developmental stages of the fruit. Furthermore, most of the PDI genes were highly induced by heat, salt, and abscisic acid (ABA) treatments, while relatively few of the genes were induced by cold and nutrient and water deficit (NWD) stresses. The predominant expression of SlPDI1-1, SlPDI1-3, SlPDI1-4, SlPDI2-1, SlPDI4-1, and SlPDI5-1 in response to abiotic stress and ABA treatment suggested they play regulatory roles in abiotic stress tolerance in tomato in an ABA-dependent manner. Our results provide new insight into the structure and function of PDI genes and will be helpful for the selection of candidate genes involved in fruit development and abiotic stress tolerance in tomato.


Assuntos
Adaptação Fisiológica/genética , Proteínas de Plantas/genética , Isomerases de Dissulfetos de Proteínas/genética , Solanum lycopersicum/fisiologia , Estresse Fisiológico/genética , Ácido Abscísico/metabolismo , Frutas/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Família Multigênica , Proteínas de Plantas/metabolismo , Isomerases de Dissulfetos de Proteínas/metabolismo
16.
BMC Plant Biol ; 20(1): 283, 2020 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-32560687

RESUMO

BACKGROUND: MicroRNAs (miRNAs) are short non-coding RNAs that can influence gene expression via diverse mechanisms. Tomato is a fruit widely consumed for its flavor, culinary attributes, and high nutritional quality. Tomato fruit are climacteric and fleshy, and their ripening is regulated by endogenous and exogenous signals operating through a coordinated genetic network. Much research has been conducted on mechanisms of tomato fruit ripening, but the roles of miRNA-regulated repression/expression of specific regulatory genes are not well documented. RESULTS: In this study, we demonstrate that miR172 specifically targets four SlAP2 transcription factor genes in tomato. Among them, SlAP2a was repressed by the overexpression of SlmiR172, manifesting in altered flower morphology, development and accelerated ripening. miR172 over-expression lines specifically repressed SlAP2a, enhancing ethylene biosynthesis, fruit color and additional ripening characteristics. Most previously described ripening-regulatory genes, including RIN-MADS, NR, TAGL1 and LeHB-1 were not influenced by miR172 while CNR showed altered expression. CONCLUSIONS: Tomato fruit ripening is directly influenced by miR172 targeting of the APETALA2 transcription factor, SlAP2a, with minimal influence over additional known ripening-regulatory genes. miR172a-guided SlAP2a expression provides insight into another layer of genetic control of ripening and a target for modifying the quality and nutritional value of tomato and possibly other fleshy fruit crops.


Assuntos
Expressão Ectópica do Gene , Frutas/crescimento & desenvolvimento , Proteínas de Homeodomínio/genética , MicroRNAs/genética , Proteínas de Plantas/genética , Solanum lycopersicum/genética , Frutas/genética , Redes Reguladoras de Genes , Proteínas de Homeodomínio/metabolismo , Solanum lycopersicum/crescimento & desenvolvimento , MicroRNAs/metabolismo , Proteínas de Plantas/metabolismo
17.
3 Biotech ; 9(9): 335, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31475087

RESUMO

Cold temperatures are a major source of stress for plants and negatively impact crop yield. A possible way to protect plants is to treat them with antifreeze proteins (AFPs). Here, we investigated whether fish AFPs can shield the rare ornamental species Hosta capitata from low-temperature stress. We elucidated the expression patterns of the cold-inducible genes C-repeat binding factor 1 (CBF1) and dehydrin 1 (DHN1), as well as the antioxidant genes superoxide dismutase (SOD) and catalase (CAT). All were upregulated at low temperature (4 °C). With increasing exposure time, CBF1 and DHN1 expression generally rose (except CBF1 at 48 h). In contrast, SOD and CAT expression gradually declined from 6 to 48 h. Depending on exposure duration, AFP regulation of gene transcription varied with concentration. However, compared with other concentrations, 100 µg/L AFP reduced CBF1 and DHN1 expression and increased SOD and CAT expression in plants, regardless of exposure time. Both AFP I and III were likely to be most effective at protecting plants against cold stress at concentrations of 100 µg/L. Their involvement in H. capitata cold-stress treatment occurred through regulating the expression of important stress-response genes.

18.
Plant Methods ; 15: 36, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31011361

RESUMO

BACKGROUND: As strawberries are susceptible to somaclonal variation when propagated by tissue culture techniques, it is challenging to obtain the true-to-type plants necessary for continuous production of fruits of stable quality. Therefore, we aimed to develop an in vitro propagation method for the production of true-to-type plants of five different strawberry cultivars from meristems cultured in media containing different concentrations of kinetin (Kn). RESULTS: For all the cultivars, shoot induction was successful only in the meristems cultured in the medium without Kn and the medium containing 0.5 mg L-1 Kn. The shoots obtained from explants cultured in media supplemented with 0.5 mg L-1 Kn exhibited better plant growth parameters than those cultured in media without Kn and were genetically stable when compared with conventionally propagated plants for all the cultivars. Vegetative and sexual characters and fruit quality attributes observed in the plants derived from meristems cultured on 0.5 mg L-1 Kn and the conventionally propagated plants were not significantly different when grown for three continuous growing seasons under greenhouse conditions. CONCLUSION: The culture of meristems in the medium containing 0.5 mg L-1 Kn is suitable for the efficient propagation of true-to-type plants of different strawberry cultivars and continuous production of fruits with stable quality. Hence, we expect that the method presented in this study will be helpful for the commercial production of true-to-type plants generated in vitro for other strawberry cultivars.

19.
3 Biotech ; 8(1): 65, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29354376

RESUMO

We analyzed the expression of anthocyanin biosynthesis genes and transcription factors (TFs) in the Gerbera hybrida cultivars 'Bintang' and 'Alliance' that exhibit different coloration patterns. Differential expression of biosynthesis genes and TFs was associated with variable anthocyanin content at different flower developmental stages (S1-S3) in both cultivars; higher anthocyanin content was correlated with higher levels of gene expression. Exposure to different temperatures (6 and 22 °C) also resulted in different anthocyanin content levels: the lower temperature (6 °C) enhanced anthocyanin content compared to the higher temperature (22 °C). However, the increased anthocyanin content of 'Bintang' compared to 'Alliance' was the result of higher levels of expression of all detected genes, regardless of flower stage and temperature conditions. Therefore, we conclude that transcriptional control of the detected genes is associated with the mechanisms of anthocyanin biosynthesis and coloration patterns in gerberas; however, further studies of the key genes are needed.

20.
BMC Genomics ; 18(1): 695, 2017 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-28874115

RESUMO

BACKGROUND: Zinc finger homeodomain proteins (ZHD) constitute a plant-specific transcription factor family with a conserved DNA binding homeodomain and a zinc finger motif. Members of the ZHD protein family play important roles in plant growth, development, and stress responses. Genome-wide characterization of ZHD genes has been carried out in several model plants, including Arabidopsis thaliana and Oryza sativa, but not yet in tomato (Solanum lycopersicum). RESULTS: In this study, we performed the first comprehensive genome-wide characterization and expression profiling of the ZHD gene family in tomato (Solanum lycopersicum). We identified 22 SlZHD genes and classified them into six subfamilies based on phylogeny. The SlZHD genes were generally conserved in each subfamily, with minor variations in gene structure and motif distribution. The 22 SlZHD genes were distributed on six of the 12 tomato chromosomes, with segmental duplication detected in four genes. Analysis of Ka/Ks ratios revealed that the duplicated genes are under negative or purifying selection. Comprehensive expression analysis revealed that the SlZHD genes are widely expressed in various tissues, with most genes preferentially expressed in flower buds compared to other tissues. Moreover, many of the genes are responsive to abiotic stress and phytohormone treatment. CONCLUSION: Systematic analysis revealed structural diversity among tomato ZHD proteins, which indicates the possibility for diverse roles of SlZHD genes in different developmental stages as well as in response to abiotic stresses. Our expression analysis of SlZHD genes in various tissues/organs and under various abiotic stress and phytohormone treatments sheds light on their functional divergence. Our findings represent a valuable resource for further analysis to explore the biological functions of tomato ZHD genes.


Assuntos
Perfilação da Expressão Gênica , Genômica , Proteínas de Homeodomínio/química , Proteínas de Homeodomínio/genética , Solanum lycopersicum/genética , Estresse Fisiológico/genética , Dedos de Zinco , Cromossomos de Plantas/genética , Duplicação Gênica , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/fisiologia , Especificidade de Órgãos , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Regiões Promotoras Genéticas/genética , Sintenia/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA