Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Database (Oxford) ; 20202020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32133509

RESUMO

Since 2012, the Center for Genome Science of the Korea National Institute of Health (KNIH) has been sequencing complete genomes of 1722 Korean individuals. As a result, more than 32 million variant sites have been identified, and a large proportion of the variant sites have been detected for the first time. In this article, we describe the Korean Reference Genome Database (KRGDB) and its genome browser. The current version of our database contains both single nucleotide and short insertion/deletion variants. The DNA samples were obtained from four different origins and sequenced in different sequencing depths (10× coverage of 63 individuals, 20× coverage of 194 individuals, combined 10× and 20× coverage of 135 individuals, 30× coverage of 230 individuals and 30× coverage of 1100 individuals). The major features of the KRGDB are that it contains information on the Korean genomic variant frequency, frequency difference between the Korean and other populations and the variant functional annotation (such as regulatory elements in ENCODE regions and coding variant functions) of the variant sites. Additionally, we performed the genome-wide association study (GWAS) between Korean genome variant sites for the 30×230 individuals and three major common diseases (diabetes, hypertension and metabolic syndrome). The association results are displayed on our browser. The KRGDB uses the MySQL database and Apache-Tomcat web server adopted with Java Server Page (JSP) and is freely available at http://coda.nih.go.kr/coda/KRGDB/index.jsp. Availability: http://coda.nih.go.kr/coda/KRGDB/index.jsp.


Assuntos
Biologia Computacional/métodos , Bases de Dados Genéticas , Genoma Humano/genética , Estudo de Associação Genômica Ampla/métodos , Genômica/métodos , Sequenciamento Completo do Genoma/métodos , Povo Asiático/genética , Mineração de Dados/métodos , Feminino , Humanos , Mutação INDEL , Internet , Masculino , Polimorfismo de Nucleotídeo Único , República da Coreia
3.
Biomol Ther (Seoul) ; 26(3): 290-297, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29401570

RESUMO

We aimed to understand the molecular changes in host cells that accompany infection by the seasonal influenza A H1N1 virus because the initial response rapidly changes owing to the fact that the virus has a robust initial propagation phase. Human epithelial alveolar A549 cells were infected and total RNA was extracted at 30 min, 1 h, 2 h, 4 h, 8 h, 24 h, and 48 h post infection (h.p.i.). The differentially expressed host genes were clustered into two distinct sets of genes as the infection progressed over time. The patterns of expression were significantly different at the early stages of infection. One of the responses showed roles similar to those associated with the enrichment gene sets to known 'gp120 pathway in HIV.' This gene set contains genes known to play roles in preventing the progress of apoptosis, which infected cells undergo as a response to viral infection. The other gene set showed enrichment of 'Drug Metabolism Enzymes (DMEs).' The identification of two distinct gene sets indicates that the virus regulates the cell's mechanisms to create a favorable environment for its stable replication and protection of gene metabolites within 8 h.

4.
PLoS One ; 11(6): e0157540, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27341347

RESUMO

Inherited prion diseases (IPDs), including genetic Creutzfeldt-Jakob disease (gCJD), account for 10-15% of cases of prion diseases and are associated with several pathogenic mutations, including P102L, V180I, and E200K, in the prion protein gene (PRNP). The valine to isoleucine substitution at codon 180 (V180I) of PRNP is the most common pathogenic mutation causing gCJD in East Asian patients. In this study, we conducted follow-up analyses to identify candidate factors and their associations with disease onset. Whole-genome sequencing (WGS) data of five gCJD patients with V180I mutation and 145 healthy individuals were used to identify genomic differences. A total of 18,648,850 candidate variants were observed in only the patient group, 29 of them were validated as variants. Four of these validated variants were nonsense mutations, six were observed in genes directly or indirectly related to neurodegenerative disorders (NDs), such as LPA, LRRK2, and FGF20. More than half of validated variants were categorized in Gene Ontology (GO) terms of binding and/or catalytic activity. Moreover, we found differential genome variants in gCJD patients with V180I mutation, including one uniquely surviving 10 years after diagnosis of the disease. Elucidation of the relationships between gCJD and Alzheimer's disease or Parkinson's disease at the genomic level will facilitate further advances in our understanding of the specific mechanisms mediating the pathogenesis of NDs and gold standard therapies for NDs.


Assuntos
Síndrome de Creutzfeldt-Jakob/genética , Genômica , Mutação , Doenças Neurodegenerativas/genética , Proteínas Priônicas/genética , Idoso , Substituição de Aminoácidos , Códon , Biologia Computacional , Síndrome de Creutzfeldt-Jakob/diagnóstico , Síndrome de Creutzfeldt-Jakob/metabolismo , Progressão da Doença , Epistasia Genética , Feminino , Ontologia Genética , Redes Reguladoras de Genes , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , Doenças Neurodegenerativas/metabolismo , Fenótipo , Proteínas tau/metabolismo
5.
Algorithms Mol Biol ; 10: 30, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26702294

RESUMO

BACKGROUND: A number of alignment tools have been developed to align sequencing reads to the human reference genome. The scale of information from next-generation sequencing (NGS) experiments, however, is increasing rapidly. Recent studies based on NGS technology have routinely produced exome or whole-genome sequences from several hundreds or thousands of samples. To accommodate the increasing need of analyzing very large NGS data sets, it is necessary to develop faster, more sensitive and accurate mapping tools. RESULTS: HIA uses two indices, a hash table index and a suffix array index. The hash table performs direct lookup of a q-gram, and the suffix array performs very fast lookup of variable-length strings by exploiting binary search. We observed that combining hash table and suffix array (hybrid index) is much faster than the suffix array method for finding a substring in the reference sequence. Here, we defined the matching region (MR) is a longest common substring between a reference and a read. And, we also defined the candidate alignment regions (CARs) as a list of MRs that is close to each other. The hybrid index is used to find candidate alignment regions (CARs) between a reference and a read. We found that aligning only the unmatched regions in the CAR is much faster than aligning the whole CAR. In benchmark analysis, HIA outperformed in mapping speed compared with the other aligners, without significant loss of mapping accuracy. CONCLUSIONS: Our experiments show that the hybrid of hash table and suffix array is useful in terms of speed for mapping NGS sequencing reads to the human reference genome sequence. In conclusion, our tool is appropriate for aligning massive data sets generated by NGS sequencing.

6.
PLoS One ; 9(12): e114128, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25493549

RESUMO

Most genome-wide association studies consider genes that are located closest to single nucleotide polymorphisms (SNPs) that are highly significant for those studies. However, the significance of the associations between SNPs and candidate genes has not been fully determined. An alternative approach that used SNPs in expression quantitative trait loci (eQTL) was reported previously for Crohn's disease; it was shown that eQTL-based preselection for follow-up studies was a useful approach for identifying risk loci from the results of moderately sized GWAS. In this study, we propose an approach that uses eQTL SNPs to support the functional relationships between an SNP and a candidate gene in a genome-wide association study. The genome-wide SNP genotypes and 10 biochemical measures (fasting glucose levels, BUN, serum albumin levels, AST, ALT, gamma GTP, total cholesterol, HDL cholesterol, triglycerides, and LDL cholesterol) were obtained from the Korean Association Resource (KARE) consortium. The eQTL SNPs were isolated from the SNP dataset based on the RegulomeDB eQTL-SNP data from the ENCODE projects and two recent eQTL reports. A total of 25,658 eQTL SNPs were tested for their association with the 10 metabolic traits in 2 Korean populations (Ansung and Ansan). The proportion of phenotypic variance explained by eQTL and non-eQTL SNPs showed that eQTL SNPs were more likely to be associated with the metabolic traits genetically compared with non-eQTL SNPs. Finally, via a meta-analysis of the two Korean populations, we identified 14 eQTL SNPs that were significantly associated with metabolic traits. These results suggest that our approach can be expanded to other genome-wide association studies.


Assuntos
Locos de Características Quantitativas , Estudo de Associação Genômica Ampla , Humanos , Polimorfismo de Nucleotídeo Único , República da Coreia
7.
BMC Med Genomics ; 7: 52, 2014 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-25149502

RESUMO

BACKGROUND: Human prion diseases are caused by abnormal accumulation of misfolded prion protein in the brain tissue. Inherited prion diseases, including familial Creutzfeldt-Jakob disease (fCJD), are associated with mutations of the prion protein gene (PRNP). The glutamate (E)-to-lysine (K) substitution at codon 200 (E200K) in PRNP is the most common pathogenic mutation causing fCJD, but the E200K pathogenic mutation alone is regarded insufficient to cause prion diseases; thus, additional unidentified factors are proposed to explain the penetrance of E200K-dependent fCJD. Here, exome differences and biological network analysis between fCJD patients with E200K and healthy individuals, including a non-CJD individual with E200K, were analysed to gain new insights into possible mechanisms for CJD in individuals carrying E200K. METHODS: Exome sequencing of the three CJD patients with E200K and 11 of the family of one patient (case1) were performed using the Illumina HiSeq 2000. The exome sequences of 24 Healthy Koreans were used as control. The bioinformatic analysis of the exome sequences was performed using the CLC Genomics Workbench v5.5. Sanger sequencing for variants validation was processed using a BigDye Terminator Cycle Sequencing Kit and an ABI 3730xl automated sequencer. Biological networks were created using Cytoscape (v2.8.3 and v3.0.2) and Pathway Studio 9.0 software. RESULTS: Nineteen sites were only observed in healthy individuals. Four proteins (NRXN2, KLKB1, KARS, and LAMA3) that harbour rarely observed single-nucleotide variants showed biological interactions that are associated with prion diseases and/or prion protein in our biological network analysis. CONCLUSION: Through this study, we confirmed that individuals can have a CJD-free life, even if they carry a pathogenic E200K mutation. Our research provides a possible mechanism that involves a candidate protective factor; this could be exploited to prevent fCJD onset in individuals carrying E200K.


Assuntos
Códon/genética , Síndrome de Creutzfeldt-Jakob/genética , Genômica , Mutação , Adulto , Idoso , Substituição de Aminoácidos , Exoma/genética , Feminino , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem
8.
Genomics Inform ; 12(4): 187-94, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25705157

RESUMO

Metabolic syndrome (METS) is a disorder of energy utilization and storage and increases the risk of developing cardiovascular disease and diabetes. To identify the genetic risk factors of METS, we carried out a genome-wide association study (GWAS) for 2,657 cases and 5,917 controls in Korean populations. As a result, we could identify 2 single nucleotide polymorphisms (SNPs) with genome-wide significance level p-values (<5 × 10(-8)), 8 SNPs with genome-wide suggestive p-values (5 × 10(-8) ≤ p < 1 × 10(-5)), and 2 SNPs of more functional variants with borderline p-values (5 × 10(-5) ≤ p < 1 × 10(-4)). On the other hand, the multiple correction criteria of conventional GWASs exclude false-positive loci, but simultaneously, they discard many true-positive loci. To reconsider the discarded true-positive loci, we attempted to include the functional variants (nonsynonymous SNPs [nsSNPs] and expression quantitative trait loci [eQTL]) among the top 5,000 SNPs based on the proportion of phenotypic variance explained by genotypic variance. In total, 159 eQTLs and 18 nsSNPs were presented in the top 5,000 SNPs. Although they should be replicated in other independent populations, 6 eQTLs and 2 nsSNP loci were located in the molecular pathways of LPL, APOA5, and CHRM2, which were the significant or suggestive loci in the METS GWAS. Conclusively, our approach using the conventional GWAS, reconsidering functional variants and pathway-based interpretation, suggests a useful method to understand the GWAS results of complex traits and can be expanded in other genomewide association studies.

9.
Genomics Inform ; 12(4): 236-9, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25705164

RESUMO

The genetic regulation of glucose and insulin levels might be modified by adiposity. With regard to the genetic factors that are altered by adiposity, a large meta-analysis on the interactions between genetic variants and body mass index with regard to fasting glucose and insulin levels was reported by the Meta-Analyses of Glucose- and Insulin-related trait Consortium (MAGIC), based on European ancestry. Because no replication study has been performed in other ethnic groups, we first examined the link between reported single-nucleotide polymorphisms (SNPs) and fasting glucose and insulin levels in a large Korean cohort (Korean Genome and Epidemiology Study cohort [KoGES], n = 5,814). The MAGIC study reported 7 novel SNPs for fasting glucose levels and 6 novel SNPs for fasting insulin levels. In this study, we attempted to replicate the association of 5 SNPs with fasting glucose levels and 5 SNPs with fasting insulin levels. One SNP (rs2293941) in PDX1 was identified as a significant obesity-modifiable factor in Koreans. Our results indicate that the novel loci that were identified by MAGIC are poorly replicated in other ethnic groups, although we do not know why.

10.
Biochem Biophys Res Commun ; 369(3): 845-8, 2008 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-18325330

RESUMO

The cis-regulatory region of target genes is key elements in the transcriptional regulation of gene expression. Many of these cis-regulatory regions have not been identified by either biological experiments or computational methods. Recently, a few additional C(2)H(2) zinc finger transcription factor binding sites have been discovered. The majority of the zinc finger binding sites, however, are still unknown. In this study, we used publically available data to evaluate possible interaction patterns between nucleotides and the amino acids of zinc finger domains. We calculated the most probable state path of three nucleotides sequences using a Hidden Markov Model (HMM). We used these computations to predict C(2)H(2) zinc finger transcription factor binding sites in cis-regulatory regions of their target genes (http://bioinfo.hanyang.ac.kr/ZIFIBI/frameset.php).


Assuntos
Simulação por Computador , DNA/metabolismo , Modelos Biológicos , Fatores de Transcrição/metabolismo , Dedos de Zinco , Animais , Sequência de Bases , Sítios de Ligação , Biologia Computacional/métodos , DNA/química , Bases de Dados Genéticas , Humanos , Fatores de Transcrição/química
11.
Artigo em Inglês | MEDLINE | ID: mdl-18003036

RESUMO

Clustering, as one of key analysis tools for gene expression data sets, attempts to discover groups of genes having similar expression patterns. In order to get a reasonable biological interpretation, it is desirable that a clustering result be accurate enough. However, conventional clustering methods do not always meet this demand since they require the exact tuning of input parameters and cluster centers for an acceptable quality of result. Through an intuitive user interaction, UI-Cluster solves the problem mentioned above, and yields better clustering results.


Assuntos
Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Software , Animais , Análise por Conglomerados , Simulação por Computador , Humanos , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA