Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Elife ; 132024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38334260

RESUMO

Cellular metabolism plays an essential role in the regrowth and regeneration of a neuron following physical injury. Yet, our knowledge of the specific metabolic pathways that are beneficial to neuron regeneration remains sparse. Previously, we have shown that modulation of O-linked ß-N-acetylglucosamine (O-GlcNAc) signaling, a ubiquitous post-translational modification that acts as a cellular nutrient sensor, can significantly enhance in vivo neuron regeneration. Here, we define the specific metabolic pathway by which O-GlcNAc transferase (ogt-1) loss of function mediates increased regenerative outgrowth. Performing in vivo laser axotomy and measuring subsequent regeneration of individual neurons in C. elegans, we find that glycolysis, serine synthesis pathway (SSP), one-carbon metabolism (OCM), and the downstream transsulfuration metabolic pathway (TSP) are all essential in this process. The regenerative effects of ogt-1 mutation are abrogated by genetic and/or pharmacological disruption of OCM and the SSP linking OCM to glycolysis. Testing downstream branches of this pathway, we find that enhanced regeneration is dependent only on the vitamin B12 independent shunt pathway. These results are further supported by RNA sequencing that reveals dramatic transcriptional changes by the ogt-1 mutation, in the genes involved in glycolysis, OCM, TSP, and ATP metabolism. Strikingly, the beneficial effects of the ogt-1 mutation can be recapitulated by simple metabolic supplementation of the OCM metabolite methionine in wild-type animals. Taken together, these data unearth the metabolic pathways involved in the increased regenerative capacity of a damaged neuron in ogt-1 animals and highlight the therapeutic possibilities of OCM and its related pathways in the treatment of neuronal injury.


Assuntos
Caenorhabditis elegans , Transdução de Sinais , Animais , Caenorhabditis elegans/fisiologia , Neurônios/metabolismo , Processamento de Proteína Pós-Traducional , Carbono/metabolismo , N-Acetilglucosaminiltransferases/genética , N-Acetilglucosaminiltransferases/metabolismo , Acetilglucosamina/metabolismo
2.
bioRxiv ; 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38293159

RESUMO

Analyses of biomedical images often rely on accurate segmentation of structures of interest. Traditional segmentation methods based on thresholding, watershed, fast marching, and level set perform well in high-contrast images containing structures of similar intensities. However, such methods can under-segment or miss entirely low-intensity objects on noisy backgrounds. Machine learning segmentation methods promise superior performance but require large training datasets of labeled images which are difficult to create, particularly in 3D. Here, we propose an algorithm based on the Local Binary Fitting (LBF) level set method, specifically designed to improve the segmentation of low-contrast structures.

3.
FEBS Lett ; 597(14): 1880-1893, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37300530

RESUMO

A conditioning lesion of the peripheral sensory axon triggers robust central axon regeneration in mammals. We trigger conditioned regeneration in the Caenorhabditis elegans ASJ neuron by laser surgery or genetic disruption of sensory pathways. Conditioning upregulates thioredoxin-1 (trx-1) expression, as indicated by trx-1 promoter-driven expression of green fluorescent protein and fluorescence in situ hybridization (FISH), suggesting trx-1 levels and associated fluorescence indicate regenerative capacity. The redox activity of trx-1 functionally enhances conditioned regeneration, but both redox-dependent and -independent activity inhibit non-conditioned regeneration. Six strains isolated in a forward genetic screen for reduced fluorescence, which suggests diminished regenerative potential, also show reduced axon outgrowth. We demonstrate an association between trx-1 expression and the conditioned state that we leverage to rapidly assess regenerative capacity.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Axônios/metabolismo , Tiorredoxinas/genética , Tiorredoxinas/metabolismo , Hibridização in Situ Fluorescente , Regeneração Nervosa/genética , Neurônios/metabolismo , Mamíferos/genética , Mamíferos/metabolismo
4.
J Vis Exp ; (195)2023 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-37212580

RESUMO

High-resolution in vivo microscopy approaches can reveal subtle information and fine details inside the model animal Caenorhabditis elegans (C. elegans), but require strong animal immobilization to prevent motion blur in the images. Unfortunately, most current immobilization techniques require substantial manual effort, rendering high-resolution imaging low-throughput. Immobilization of C. elegans is greatly simplified by using a cooling approach that can easily immobilize entire populations directly on their cultivation plates. The cooling stage can establish and maintain a wide range of temperatures with a uniform distribution on the cultivation plate. In this article, the whole process of building the cooling stage is documented. The aim is that a typical researcher can build an operational cooling stage in their laboratory following this protocol without difficulty. Utilization of the cooling stage following three protocols is shown, and each protocol has advantages for different experiments. Also shown is an example cooling profile of the stage as it approaches its final temperature and some helpful tips in using cooling immobilization.


Assuntos
Caenorhabditis elegans , Diagnóstico por Imagem , Animais , Temperatura Baixa , Temperatura , Microscopia Intravital
5.
iScience ; 26(2): 105999, 2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36794150

RESUMO

Despite its profound impact on biology, high-resolution in vivo microscopy largely remains low throughput because current immobilization techniques require substantial manual effort. We implement a simple cooling approach to immobilize entire populations of the nematode Caenorhabditis elegans directly on their cultivation plates. Counterintuitively, warmer temperatures immobilize animals much more effectively than the colder temperatures of prior studies and enable clear submicron-resolution fluorescence imaging, which is challenging under most immobilization techniques. We demonstrate 64× z-stack and time-lapse imaging of neurons in adults and embryos without motion blur. Compared to standard azide immobilization, cooling immobilization reduces the animal preparation and recovery time by >98%, significantly increasing experimental speed. High-throughput imaging of a fluorescent proxy in cooled animals and direct laser axotomy indicate that the transcription factor CREB underlies lesion conditioning. By obviating individual animal manipulation, our approach could empower automated imaging of large populations within standard experimental setups and workflows.

6.
J Biophotonics ; 15(9): e202200042, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35583201

RESUMO

Femtosecond lasers are capable of precise ablation that produces surgical dissections in vivo. The transverse and axial resolutions of the laser damage inside the bulk are important parameters of ablation. The transverse resolution is routinely quantified; but the axial resolution is more difficult to measure and is less commonly performed. Using a 1040-nm, 400-fs pulsed laser, and a 1.4-NA objective, we performed ablation inside agarose and glass, producing clear, and persistent damage spots. Near the ablation threshold of both media, we found that the axial resolution is similar to the transverse resolution. We also ablated neuron cell bodies and fibers in Caenorhabditis elegans and demonstrate submicrometer resolution in both the transverse and axial directions, consistent with our results in agarose and glass. Using simple yet rigorous methods, we define the resolution of laser ablation in transparent media along all directions.


Assuntos
Terapia a Laser , Lasers , Animais , Caenorhabditis elegans , Terapia a Laser/métodos , Sefarose
7.
PLoS One ; 16(2): e0244034, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33591984

RESUMO

Confocal microscopes can reject out-of-focus and scattered light; however, widefield microscopes are far more common in biological laboratories due to their accessibility and lower cost. We report confocal imaging capacity on a widefield microscope by adding a spatial light modulator (SLM) and utilizing custom illumination and acquisition methods. We discuss our illumination strategy and compare several procedures for postprocessing the acquired image data. We assessed the performance of this system for rejecting out-of-focus light by comparing images taken at 1.4 NA using our widefield microscope, our SLM-enhanced setup, and a commercial confocal microscope. The optical sectioning capability, assessed on thin fluorescent film, was 0.85 ± 0.04 µm for our SLM-enhanced setup and 0.68 ± 0.04 µm for a confocal microscope, while a widefield microscope exhibited no sectioning capability. We demonstrate our setup by imaging the same set of neurons in C. elegans on widefield, SLM, and confocal microscopes. SLM enhancement greatly reduces background from the cell body, allowing visualization of dim fibers nearby. Our SLM-enhanced setup identified 96% of the dim neuronal fibers seen in confocal images while a widefield microscope only identified 50% of the same fibers. Our microscope add-on represents a very simple (2-component) and inexpensive (<$600) approach to enable widefield microscopes to optically section thick samples.


Assuntos
Microscopia Confocal/métodos , Neurônios/metabolismo , Animais , Caenorhabditis elegans , Processamento de Imagem Assistida por Computador
8.
Sci Rep ; 9(1): 17795, 2019 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-31780755

RESUMO

Multichannel (multicolor) imaging has become a powerful technique in biology research for performing in vivo neuronal calcium imaging, colocalization of fluorescent labels, non-invasive pH measurement, and other procedures. We describe a novel add-on approach for simultaneous multichannel optical microscopy based on simple wedge prisms. Our device requires no alignment and is simple, robust, user-friendly, and less expensive than current commercial instruments based on switchable filters or dual-view strategies. Point spread function measurements and simulations in Zemax indicate a reduction in resolution in the direction orthogonal to the wedge interface and in the axial direction, without introducing aberration. These effects depend on the objective utilized and are most significant near the periphery of the field of view. We tested a two-channel device on C. elegans neurons in vivo and demonstrated comparable signals to a conventional dual-view instrument. We also tested a four-channel device on fixed chick embryo Brainbow samples and identified individual neurons by their spectra without extensive image postprocessing. Therefore, we believe that this technology has the potential for broad use in microscopy.


Assuntos
Caenorhabditis elegans/citologia , Microscopia/métodos , Neurônios/metabolismo , Imagem Óptica/métodos , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Embrião de Galinha , Corantes Fluorescentes/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Proteínas Luminescentes/metabolismo , Microscopia/instrumentação , Microscopia de Fluorescência/instrumentação , Microscopia de Fluorescência/métodos , Imagem Óptica/instrumentação , Proteína Vermelha Fluorescente
9.
Proc Natl Acad Sci U S A ; 113(20): E2852-60, 2016 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-27078101

RESUMO

During development, a neuron transitions from a state of rapid growth to a stable morphology, and neurons within the adult mammalian CNS lose their ability to effectively regenerate in response to injury. Here, we identify a novel form of neuronal regeneration, which is remarkably independent of DLK-1/DLK, KGB-1/JNK, and other MAPK signaling factors known to mediate regeneration in Caenorhabditis elegans, Drosophila, and mammals. This DLK-independent regeneration in C. elegans has direct genetic and molecular links to a well-studied form of endogenous activity-dependent ectopic axon outgrowth in the same neuron type. Both neuron outgrowth types are triggered by physical lesion of the sensory dendrite or mutations disrupting sensory activity, calcium signaling, or genes that restrict outgrowth during neuronal maturation, such as SAX-1/NDR kinase or UNC-43/CaMKII. These connections suggest that ectopic outgrowth represents a powerful platform for gene discovery in neuronal regeneration. Moreover, we note numerous similarities between C. elegans DLK-independent regeneration and lesion conditioning, a phenomenon producing robust regeneration in the mammalian CNS. Both regeneration types are triggered by lesion of a sensory neurite via reduction of neuronal activity and enhanced by disrupting L-type calcium channels or elevating cAMP. Taken as a whole, our study unites disparate forms of neuronal outgrowth to uncover fresh molecular insights into activity-dependent control of the adult nervous system's intrinsic regenerative capacity.


Assuntos
Caenorhabditis elegans/genética , Regeneração Nervosa , Animais , Axônios/metabolismo , Proteínas de Caenorhabditis elegans/genética , Canais de Cálcio Tipo L
10.
J Neurosci ; 34(48): 15947-56, 2014 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-25429136

RESUMO

Regulated calcium signals play conserved instructive roles in neuronal repair, but how localized calcium stores are differentially mobilized, or might be directly manipulated, to stimulate regeneration within native contexts is poorly understood. We find here that localized calcium release from the endoplasmic reticulum via ryanodine receptor (RyR) channels is critical in stimulating initial regeneration following traumatic cellular damage in vivo. Using laser axotomy of single neurons in Caenorhabditis elegans, we find that mutation of unc-68/RyR greatly impedes both outgrowth and guidance of the regenerating neuron. Performing extended in vivo calcium imaging, we measure subcellular calcium signals within the immediate vicinity of the regenerating axon end that are sustained for hours following axotomy and completely eliminated within unc-68/RyR mutants. Finally, using a novel optogenetic approach to periodically photo-stimulate the axotomized neuron, we can enhance its regeneration. The enhanced outgrowth depends on both amplitude and temporal pattern of excitation and can be blocked by disruption of UNC-68/RyR. This demonstrates the exciting potential of emerging optogenetic technology to beneficially manipulate cell physiology in the context of neuronal regeneration and indicates a link to the underlying cellular calcium signal. Taken as a whole, our findings define a specific localized calcium signal mediated by RyR channel activity that stimulates regenerative outgrowth, which may be dynamically manipulated for beneficial neurotherapeutic effects.


Assuntos
Cálcio/metabolismo , Regeneração Nervosa/fisiologia , Neurônios/fisiologia , Optogenética/métodos , Canal de Liberação de Cálcio do Receptor de Rianodina/fisiologia , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans , Channelrhodopsins , Mecanotransdução Celular/fisiologia , Frações Subcelulares/fisiologia
11.
PLoS Genet ; 10(10): e1004707, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25357003

RESUMO

Feeding state and food availability can dramatically alter an animals' sensory response to chemicals in its environment. Dynamic changes in the expression of chemoreceptor genes may underlie some of these food and state-dependent changes in chemosensory behavior, but the mechanisms underlying these expression changes are unknown. Here, we identified a KIN-29 (SIK)-dependent chemoreceptor, srh-234, in C. elegans whose expression in the ADL sensory neuron type is regulated by integration of sensory and internal feeding state signals. We show that in addition to KIN-29, signaling is mediated by the DAF-2 insulin-like receptor, OCR-2 TRPV channel, and NPR-1 neuropeptide receptor. Cell-specific rescue experiments suggest that DAF-2 and OCR-2 act in ADL, while NPR-1 acts in the RMG interneurons. NPR-1-mediated regulation of srh-234 is dependent on gap-junctions, implying that circuit inputs regulate the expression of chemoreceptor genes in sensory neurons. Using physical and genetic manipulation of ADL neurons, we show that sensory inputs from food presence and ADL neural output regulate srh-234 expression. While KIN-29 and DAF-2 act primarily via the MEF-2 (MEF2) and DAF-16 (FOXO) transcription factors to regulate srh-234 expression in ADL neurons, OCR-2 and NPR-1 likely act via a calcium-dependent but MEF-2- and DAF-16-independent pathway. Together, our results suggest that sensory- and circuit-mediated regulation of chemoreceptor genes via multiple pathways may allow animals to precisely regulate and fine-tune their chemosensory responses as a function of internal and external conditions.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Comportamento Alimentar , Insulina/genética , Proteínas Serina-Treonina Quinases/genética , Receptor de Insulina/genética , Receptores de Neuropeptídeo Y/genética , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/biossíntese , Regulação da Expressão Gênica , Insulina/biossíntese , Mutação , Receptor de Insulina/biossíntese , Receptores de Neuropeptídeo Y/biossíntese , Células Receptoras Sensoriais/metabolismo , Transdução de Sinais/genética , Fatores de Transcrição/genética
12.
Cell Rep ; 4(2): 316-326, 2013 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-23871668

RESUMO

The specific roles of neuronal subcellular components in behavior and development remain largely unknown, even though advances in molecular biology and conventional whole-cell laser ablation have greatly accelerated the identification of contributors at the molecular and cellular levels. We systematically applied femtosecond laser ablation, which has submicrometer resolution in vivo, to dissect the cell bodies, dendrites, or axons of a sensory neuron (ASJ) in Caenorhabditis elegans to determine their roles in modulating locomotion and the developmental decisions for dauer, a facultative, stress-resistant life stage. Our results indicate that the cell body sends out axonally mediated and hormonal signals in order to mediate these functions. Furthermore, our results suggest that antagonistic sensory dendritic signals primarily drive and switch polarity between the decisions to enter and exit dauer. Thus, the improved resolution of femtosecond laser ablation reveals a rich complexity of neuronal signaling at the subcellular level, including multiple neurite and hormonally mediated pathways dependent on life stage.


Assuntos
Comportamento Animal/fisiologia , Caenorhabditis elegans/fisiologia , Sistema Endócrino/fisiologia , Terapia a Laser/métodos , Células Receptoras Sensoriais/fisiologia , Animais , Caenorhabditis elegans/crescimento & desenvolvimento , Transdução de Sinais , Fatores de Tempo
13.
J Vis Exp ; (74)2013 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-23603812

RESUMO

The nematode worm C. elegans is an ideal model organism for relatively simple, low cost neuronal imaging in vivo. Its small transparent body and simple, well-characterized nervous system allows identification and fluorescence imaging of any neuron within the intact animal. Simple immobilization techniques with minimal impact on the animal's physiology allow extended time-lapse imaging. The development of genetically-encoded calcium sensitive fluorophores such as cameleon and GCaMP allow in vivo imaging of neuronal calcium relating both cell physiology and neuronal activity. Numerous transgenic strains expressing these fluorophores in specific neurons are readily available or can be constructed using well-established techniques. Here, we describe detailed procedures for measuring calcium dynamics within a single neuron in vivo using both GCaMP and cameleon. We discuss advantages and disadvantages of both as well as various methods of sample preparation (animal immobilization) and image analysis. Finally, we present results from two experiments: 1) Using GCaMP to measure the sensory response of a specific neuron to an external electrical field and 2) Using cameleon to measure the physiological calcium response of a neuron to traumatic laser damage. Calcium imaging techniques such as these are used extensively in C. elegans and have been extended to measurements in freely moving animals, multiple neurons simultaneously and comparison across genetic backgrounds. C. elegans presents a robust and flexible system for in vivo neuronal imaging with advantages over other model systems in technical simplicity and cost.


Assuntos
Cálcio/metabolismo , Neurônios/metabolismo , Imagem Óptica/métodos , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans , Cálcio/análise , Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes/química , Proteínas de Fluorescência Verde/química , Microscopia de Fluorescência/métodos , Neurônios/química , Proteínas Recombinantes de Fusão/química , Restrição Física
14.
J Biophotonics ; 2(10): 557-72, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19606444

RESUMO

Femtosecond laser ablation permits non-invasive surgeries in the bulk of a sample with submicrometer resolution. We briefly review the history of optical surgery techniques and the experimental background of femtosecond laser ablation. Next, we present several clinical applications, including dental surgery and eye surgery. We then summarize research applications, encompassing cell and tissue studies, research on C. elegans, and studies in zebrafish. We conclude by discussing future trends of femtosecond laser systems and some possible application directions.


Assuntos
Terapia a Laser/métodos , Animais , Humanos , Terapia a Laser/instrumentação , Terapia a Laser/tendências , Procedimentos Cirúrgicos Oftalmológicos/métodos , Procedimentos Cirúrgicos Oftalmológicos/tendências , Procedimentos Cirúrgicos Bucais/métodos , Procedimentos Cirúrgicos Bucais/tendências , Fatores de Tempo
15.
Curr Biol ; 18(19): 1445-55, 2008 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-18818084

RESUMO

BACKGROUND: Egg laying in Caenorhabditis elegans has been well studied at the genetic and behavioral levels. However, the neural basis of egg-laying behavior is still not well understood; in particular, the roles of specific neurons and the functional nature of the synaptic connections in the egg-laying circuit remain uncharacterized. RESULTS: We have used in vivo neuroimaging and laser surgery to address these questions in intact, behaving animals. We have found that the HSN neurons play a central role in driving egg-laying behavior through direct excitation of the vulval muscles and VC motor neurons. The VC neurons play a dual role in the egg-laying circuit, exciting the vulval muscles while feedback-inhibiting the HSNs. Interestingly, the HSNs are active in the absence of synaptic input, suggesting that egg laying may be controlled through modulation of autonomous HSN activity. Indeed, body touch appears to inhibit egg laying, in part by interfering with HSN calcium oscillations. CONCLUSIONS: The egg-laying motor circuit comprises a simple three-component system combining feed-forward excitation and feedback inhibition. This microcircuit motif is common in the C. elegans nervous system, as well as in the mammalian cortex; thus, understanding its functional properties in C. elegans may provide insight into its computational role in more complex brains.


Assuntos
Comportamento Animal/fisiologia , Caenorhabditis elegans/fisiologia , Neurônios Motores/fisiologia , Oviparidade/fisiologia , Acetilcolina/metabolismo , Animais , Homeostase , Neuropeptídeos/metabolismo , Concentração Osmolar , Serotonina/metabolismo , Sinapses/metabolismo , Fatores de Tempo , Tato
16.
BMC Neurosci ; 7: 30, 2006 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-16600041

RESUMO

BACKGROUND: Caenorhabditis elegans actively crawls down thermal gradients until it reaches the temperature of its prior cultivation, exhibiting what is called cryophilic movement. Implicit in the worm's performance of cryophilic movement is the ability to detect thermal gradients, and implicit in regulating the performance of cryophilic movement is the ability to compare the current temperature of its surroundings with a stored memory of its cultivation temperature. Several lines of evidence link the AFD sensory neuron to thermotactic behavior, but its precise role is unclear. A current model contends that AFD is part of a thermophilic mechanism for biasing the worm's movement up gradients that counterbalances the cryophilic mechanism for biasing its movement down gradients. RESULTS: We used tightly-focused femtosecond laser pulses to dissect the AFD neuronal cell bodies and the AFD sensory dendrites in C. elegans to investigate their contribution to cryophilic movement. We establish that femtosecond laser ablation can exhibit submicrometer precision, severing individual sensory dendrites without causing collateral damage. We show that severing the dendrites of sensory neurons in young adult worms permanently abolishes their sensory contribution without functional regeneration. We show that the AFD neuron regulates a mechanism for generating cryophilic bias, but we find no evidence that AFD laser surgery reduces a putative ability to generate thermophilic bias. In addition, although disruption of the AIY interneuron causes worms to exhibit cryophilic bias at all temperatures, we find no evidence that laser killing the AIZ interneuron causes thermophilic bias at any temperature. CONCLUSION: We conclude that laser surgical analysis of the neural circuit for thermotaxis does not support a model in which AFD opposes cryophilic bias by generating thermophilic bias. Our data supports a model in which the AFD neuron gates a mechanism for generating cryophilic bias.


Assuntos
Caenorhabditis elegans/fisiologia , Locomoção , Neurônios Aferentes/fisiologia , Temperatura , Animais , Comportamento Animal/efeitos da radiação , Caenorhabditis elegans/efeitos da radiação , Lasers , Modelos Neurológicos , Neurônios Aferentes/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA