Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Adv Funct Mater ; 33(35)2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-38131003

RESUMO

Porous alginate hydrogels possess many advantages as cell carriers. However, current pore generation methods require either complex or harsh fabrication processes, toxic components, or extra purification steps, limiting the feasibility and affecting the cellular survival and function. In this study, a simple and cell-friendly approach to generate highly porous cell-laden alginate hydrogels based on two-phase aqueous emulsions is reported. The pre-gel solutions, which contain two immiscible aqueous phases of alginate and caseinate, are crosslinked by calcium ions. The porous structure of the hydrogel construct is formed by subsequently removing the caseinate phase from the ion-crosslinked alginate hydrogel. Those porous alginate hydrogels possess heterogeneous pores around 100 µm and interconnected paths. Human white adipose progenitors (WAPs) encapsulated in these hydrogels self-organize into spheroids and show enhanced viability, proliferation, and adipogenic differentiation, compared to non-porous constructs. As a proof of concept, this porous alginate hydrogel platform is employed to prepare core-shell spheres for coculture of WAPs and colon cancer cells, with WAP clusters distributed around cancer cell aggregates, to investigate cellular crosstalk. This efficacious approach is believed to provide a robust and versatile platform for engineering porous-structured alginate hydrogels for applications as cell carriers and in disease modeling.

2.
Sci Rep ; 13(1): 12794, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37550331

RESUMO

The role of iron in the two major sites of adaptive thermogenesis, namely the beige inguinal (iWAT) and brown adipose tissues (BAT) has not been fully understood yet. Body iron levels and distribution is controlled by the iron regulatory peptide hepcidin. Here, we explored iron homeostasis and thermogenic activity in brown and beige fat in wild-type and iron loaded Hepcidin KO mice. Hepcidin-deficient mice displayed iron overload in both iWAT and BAT, and preferential accumulation of ferritin in stromal cells compared to mature adipocytes. In contrast to BAT, the iWAT of Hepcidin KO animals featured with defective thermogenesis evidenced by an altered beige signature, including reduced UCP1 levels and decreased mitochondrial respiration. This thermogenic modification appeared cell autonomous and persisted after a 48 h-cold challenge, a potent trigger of thermogenesis, suggesting compromised de novo adipogenesis. Given that WAT browning occurs in both mice and humans, our results provide physiological results to interrogate the thermogenic capacity of patients with iron overload disorders.


Assuntos
Adipogenia , Hepcidinas , Animais , Camundongos , Tecido Adiposo Marrom , Tecido Adiposo Branco , Hepcidinas/genética , Ferro , Camundongos Endogâmicos C57BL , Termogênese , Proteína Desacopladora 1/genética
3.
Curr Oncol ; 30(4): 4197-4207, 2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-37185433

RESUMO

Emerging evidence highlights the important impact of early-life exposures on cancer development later in life. The present study aimed to investigate the impacts of a high-fat diet in early life on the mammary microenvironment in relation to breast tumorigenesis. Forty-four female C57BL/6 mice were fed a low-fat diet (LF, 10 kcal% fat) or a high-fat diet (HF, 60 kcal% fat) for 8 weeks starting at ~4 weeks of age. Twenty-two mice were sacrificed immediately after an 8 week feeding, and the rest of mice were switched to a normal diet for maintenance (Lab Diet, #5P76) for additional 12 weeks. A panel of metabolic parameters, inflammatory cytokines, as well as tumorigenic Wnt-signaling target genes were analyzed. The HF diet increased body weight and exacerbated mammary metabolic and inflammatory status. The disrupted microenvironment remains significant to the later life equivalent to young adulthood (p < 0.05). Mammary Wnt-signaling was elevated right after the HF diet as indicated by the upregulated expression of its downstream genes, whereas it was surprisingly suppressed after switching diets (p < 0.05). In summary, HF-induced overweight/obesity in early life altered the mammary metabolic and inflammatory microenvironments in favor of breast tumorigenesis, although its overall impact to breast cancer later in life warrants further investigation.


Assuntos
Dieta Hiperlipídica , Obesidade , Camundongos , Feminino , Humanos , Animais , Dieta Hiperlipídica/efeitos adversos , Camundongos Endogâmicos C57BL , Peso Corporal , Carcinogênese/metabolismo , Microambiente Tumoral
4.
J Nutr Biochem ; 112: 109204, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36400112

RESUMO

A prolonged high-fat and high-sucrose (HFHS) diet induces hepatic inflammation and mediates hepatic stellate cell (HSC) activation, which result in hepatic fibrosis. Aberrant activation of the innate immune system components, such as the NOD-like receptor protein 3 (NLRP3) inflammasome, has been implicated in HSC activation and hepatic fibrosis. We have previously shown that p-coumaric acid (PCA)-enriched peanut sprout extracts exert anti-inflammatory effects. However, it is unknown whether PCA reduces hepatic fibrosis by modulating innate immunity and HSC activation. To test this hypothesis, C57BL/6 male mice were randomly assigned to three groups and fed low-fat (LF) diet (11% calories from fat), high-fat (HF) diet (60% calories from fat, 0.2% cholesterol) with sucrose drink (20% sucrose, HFHS), or HFHS diet with PCA treatment (HFHS+PCA, 50 mg/kg body weight, intraperitoneally) for 13 weeks. The results showed that PCA treatment (1) partly improved systemic insulin sensitivity without altering adiposity, (2) attenuated hepatic signaling pathways associated with NLRP3 inflammasome activation, including toll-like receptor 4 (TLR4)/nuclear factor kappa B (NFκB), and endoplasmic reticulum/oxidative stress, and (3) reduced circulating interleukin (IL)-1ß levels. More importantly, PCA ameliorated hepatic fibrosis compared to that in the HFHS group, and the anti-fibrogenic effects of PCA were confirmed in vitro in transforming growth factor ß (TGFß) treated-LX-2 HSCs. The role of PCA in decreased NLRP3 activation and caspase-1 cleavage was recapitulated in primary bone marrow‒derived macrophages. These findings indicate that PCA contributes to the prevention of HFHS diet‒mediated liver fibrosis, partly by attenuating the activation of the NLRP3 inflammasome.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Masculino , Camundongos , Animais , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas NLR , Camundongos Endogâmicos C57BL , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/prevenção & controle , Cirrose Hepática/metabolismo , Sacarose
5.
Bioact Mater ; 22: 518-534, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36330162

RESUMO

Transplanting cell cultured brown adipocytes (BAs) represents a promising approach to prevent and treat obesity (OB) and its associated metabolic disorders, including type 2 diabetes mellitus (T2DM). However, transplanted BAs have a very low survival rate in vivo. The enzymatic dissociation during the harvest of fully differentiated BAs also loses significant cells. There is a critical need for novel methods that can avoid cell death during cell preparation, transplantation, and in vivo. Here, we reported that preparing BAs as injectable microtissues could overcome the problem. We found that 3D culture promoted BA differentiation and UCP-1 expression, and the optimal initial cell aggregate size was 100 µm. The microtissues could be produced at large scales via 3D suspension assisted with a PEG hydrogel and could be cryopreserved. Fabricated microtissues could survive in vivo for long term. They alleviated body weight and fat gain and improved glucose tolerance and insulin sensitivity in high-fat diet (HFD)-induced OB and T2DM mice. Transplanted microtissues impacted multiple organs, secreted protein factors, and influenced the secretion of endogenous adipokines. To our best knowledge, this is the first report on fabricating human BA microtissues and showing their safety and efficacy in T2DM mice. The proposal of transplanting fabricated BA microtissues, the microtissue fabrication method, and the demonstration of efficacy in T2DM mice are all new. Our results show that engineered 3D human BA microtissues have considerable advantages in product scalability, storage, purity, safety, dosage, survival, and efficacy.

6.
Biofabrication ; 14(3)2022 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-35504266

RESUMO

Cancer-associated cachexia (CAC) is a complex metabolic and behavioral syndrome with multiple manifestations that involve systemic inflammation, weight loss, and adipose lipolysis. It impacts the quality of life of patients and is the direct cause of death in 20%-30% of cancer patients. The severity of fat loss and adipose tissue remodeling negatively correlate with patients' survival outcomes. To address the mechanism of fat loss and design potential approaches to prevent the process, it will be essential to understand CAC pathophysiology through white adipose tissue models. In the present study, an engineered human white adipose tissue (eWAT) model based on three-dimensional (3D) bioprinting was developed and induced with pancreatic cancer cell-conditioned medium (CM) to mimic the status of CACin vitro. We found that the CM induction significantly increased the lipolysis and accumulation of the extracellular matrix (ECM). The 3D eWATs were further vascularized to study the influence of vascularization on lipolysis and CAC progression, which was largely unknown. Results demonstrated that CM induction improved the angiogenesis of vascularized eWATs (veWATs), and veWATs demonstrated decreased glycerol release but increasedUCP1expression, compared to eWATs. Many unique inflammatory cytokines (IL-8, CXCL-1, GM-CSF, etc) from the CM were detected and supposed to contribute to eWAT lipolysis,UCP1up-regulation, and ECM development. In response to CM induction, eWATs also secreted inflammatory adipokines related to the metastatic ability of cancer, muscle atrophy, and vascularization (NGAL, CD54, IGFBP-2, etc). Our work demonstrated that the eWAT is a robust model for studying cachectic fat loss and the accompanying remodeling of adipose tissue. It is therefore a useful tool for future research exploring CAC physiologies and developing potential therapies.


Assuntos
Caquexia , Neoplasias , Tecido Adiposo/metabolismo , Tecido Adiposo Branco/metabolismo , Tecido Adiposo Branco/patologia , Caquexia/etiologia , Caquexia/metabolismo , Meios de Cultivo Condicionados/farmacologia , Humanos , Lipólise , Neoplasias/patologia , Qualidade de Vida
7.
Antioxidants (Basel) ; 11(4)2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35453374

RESUMO

Arsenic, a naturally occurring metalloid derived from the environment, has been studied worldwide for its causative effects in various cancers. However, the effects of arsenic toxicity on the development and progression of metabolic syndrome, including obesity and diabetes, has received less attention. Many studies suggest that metabolic dysfunction and autophagy dysregulation of adipose and muscle tissues are closely related to the development of metabolic disease. In the USA, arsenic contamination has been reported in some ground water, soil and grain samples in major agricultural regions, but the effects on adipose and muscle tissue metabolism and autophagy have not been investigated much. Here, we highlight arsenic toxicity according to the species, dose and exposure time and the effects on adipose and muscle tissue metabolism and autophagy. Historically, arsenic was used as both a poison and medicine, depending on the dose and treatment time. In the modern era, arsenic intoxication has significantly increased due to exposure from water, soil and food, which could be a contributing factor in the development and progression of metabolic disease. From this review, a better understanding of the pathogenic mechanisms by which arsenic alters metabolism and autophagy regulation could become a cornerstone leading to the development of therapeutic strategies against arsenic-induced toxicity and metabolic disease.

8.
Sci Rep ; 12(1): 1659, 2022 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-35102236

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) patients display distinct phenotypes of cachexia development, with either adipose tissue loss preceding skeletal muscle wasting or loss of only adipose tissue. Activin A levels were measured in serum and analyzed in tumor specimens of both a cohort of Stage IV PDAC patients and the genetically engineered KPC mouse model. Our data revealed that serum activin A levels were significantly elevated in Stage IV PDAC patients in comparison to age-matched non-cancer patients. Little is known about the role of activin A in adipose tissue wasting in the setting of PDAC cancer cachexia. We established a correlation between elevated activin A and remodeling of visceral adipose tissue. Atrophy and fibrosis of visceral adipose tissue was examined in omental adipose tissue of Stage IV PDAC patients and gonadal adipose tissue of an orthotopic mouse model of PDAC. Remarkably, white visceral adipose tissue from both PDAC patients and mice exhibited decreased adipocyte diameter and increased fibrotic deposition. Strikingly, expression of thermogenic marker UCP1 in visceral adipose tissues of PDAC patients and mice remained unchanged. Thus, we propose that activin A signaling could be relevant to the acceleration of visceral adipose tissue wasting in PDAC-associated cachexia.


Assuntos
Ativinas/metabolismo , Adipócitos Brancos/metabolismo , Adiposidade , Carcinoma Ductal Pancreático/metabolismo , Subunidades beta de Inibinas/metabolismo , Gordura Intra-Abdominal/metabolismo , Neoplasias Pancreáticas/metabolismo , Ativinas/genética , Adipócitos Brancos/patologia , Animais , Atrofia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Estudos de Casos e Controles , Linhagem Celular , Fibrose , Humanos , Subunidades beta de Inibinas/genética , Gordura Intra-Abdominal/patologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Estadiamento de Neoplasias , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Transdução de Sinais , Proteína Desacopladora 1/metabolismo
9.
J Cachexia Sarcopenia Muscle ; 13(2): 1289-1301, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35044098

RESUMO

BACKGROUND: Cancer-associated cachexia (CAC) is a complex syndrome of progressive muscle wasting and adipose loss with metabolic dysfunction, severely increasing the morbidity and mortality risk in cancer patients. However, there are limited studies focused on the underlying mechanisms of the progression of CAC due to the complexity of this syndrome and the lack of preclinical models that mimics its stagewise progression. METHODS: We characterized the initiation and progression of CAC in transgenic female mice with ovarian tumours. We measured proposed CAC biomarkers (activin A, GDF15, IL-6, IL-1ß, and TNF-α) in sera (n = 6) of this mouse model. The changes of activin A and GDF15 (n = 6) were correlated with the decline of bodyweight over time. Morphometry and signalling markers of muscle atrophy (n ≥ 6) and adipose tissue wasting (n ≥ 7) were assessed during CAC progression. RESULTS: Cancer-associated cachexia symptoms of the transgenic mice model used in this study mimic the progression of CAC seen in humans, including drastic body weight loss, skeletal muscle atrophy, and adipose tissue wasting. Serum levels of two cachexia biomarkers, activin A and GDF15, increased significantly during cachexia progression (76-folds and 10-folds, respectively). Overactivation of proteolytic activity was detected in skeletal muscle through up-regulating muscle-specific E3 ligases Atrogin-1 and Murf-1 (16-folds and 14-folds, respectively) with decreasing cross-sectional area of muscle fibres (P < 0.001). Muscle wasting mechanisms related with p-p38 MAPK, FOXO3, and p-AMPKα were highly activated in concurrence with an elevation in serum activin A. Dramatic fat loss was also observed in this mouse model with decreased fat mass (n ≥ 6) and white adipocytes sizes (n = 6) (P < 0.0001). The adipose tissue wasting was based on thermogenesis, supported by the up-regulation of uncoupling protein 1 (UCP1). Fibrosis in adipose tissue was also observed in concurrence with adipose tissue loss (n ≥ 13) (p < 0.0001). CONCLUSIONS: Our novel preclinical CAC mouse model mimics human CAC phenotypes and serum biomarkers. The mouse model in this study showed proteolysis in muscle atrophy, browning in adipose tissue wasting, elevation of serum activin A and GDF15, and atrophy of pancreas and liver. This mouse line would be the best preclinical model to aid in clarifying molecular mediators of CAC and dissecting metabolic dysfunction and tissue atrophy during the progression of CAC.


Assuntos
Caquexia , Neoplasias Ovarianas , Tecido Adiposo/patologia , Animais , Caquexia/patologia , Feminino , Humanos , Camundongos , Camundongos Transgênicos , Músculo Esquelético/patologia , Atrofia Muscular/patologia , Neoplasias Ovarianas/complicações , Neoplasias Ovarianas/patologia
10.
Theranostics ; 11(19): 9311-9330, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34646372

RESUMO

Aberrant activation of the nucleotide-binding domain and leucine-rich repeat related (NLR) family, pyrin domain containing 3 (NLRP3) inflammasome drives the development of many complex inflammatory diseases, such as obesity, Alzheimer's disease, and atherosclerosis. However, no medications specifically targeting the NLRP3 inflammasome have become clinically available. Therefore, we aim to identify new inhibitors of the NLRP3 inflammasome in this study. Methods: Vesicle-like nanoparticles (VLNs) were extracted from garlic chives and other Allium vegetables and their effects on the NLRP3 inflammasome were evaluated in primary macrophages. After garlic chive-derived VLNs (GC-VLNs) were found to exhibit potent anti-NLRP3 inflammasome activity in cell culture, such function was further assessed in a murine acute liver injury disease model, as well as in diet-induced obesity. Finally, GC-VLNs were subjected to omics analysis to identify the active components with anti-NLRP3 inflammasome function. Results: GC-VLNs are membrane-enclosed nanoparticles containing lipids, proteins, and RNAs. They dose-dependently inhibit pathways downstream of NLRP3 inflammasome activation, including caspase-1 autocleavage, cytokine release, and pyroptotic cell death in primary macrophages. The inhibitory effects of GC-VLNs on the NLRP3 inflammasome are specific, considering their marginal impact on activation of other inflammasomes. Local administration of GC-VLNs in mice alleviates NLRP3 inflammasome-mediated inflammation in chemical-induced acute liver injury. When administered orally or intravenously, GC-VLNs accumulate in specific tissues and suppress activation of the NLRP3 inflammasome and chronic inflammation in diet-induced obese mice. The phospholipid 1,2-dilinoleoyl-sn-glycero-3-phosphocholine (DLPC) in GC-VLNs has been identified to inhibit NLRP3 inflammasome activation. Conclusions: Identification of GC-VLNs and their active component DLPC as potent inflammasome inhibitors provides new therapeutic candidates in the treatment of NLRP3 inflammasome-driven diseases.


Assuntos
Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/efeitos dos fármacos , Extratos Vegetais/farmacologia , Animais , Antioxidantes/farmacologia , China , Cebolinha-Francesa/metabolismo , Citocinas/metabolismo , Avaliação Pré-Clínica de Medicamentos/métodos , Vesículas Extracelulares/metabolismo , Alho/metabolismo , Inflamação/metabolismo , Mediadores da Inflamação/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Nanopartículas/química , Obesidade , Fagocitose
11.
Proc Natl Acad Sci U S A ; 118(40)2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34593646

RESUMO

Iron is an essential biometal, but is toxic if it exists in excess. Therefore, iron content is tightly regulated at cellular and systemic levels to meet metabolic demands but to avoid toxicity. We have recently reported that adaptive thermogenesis, a critical metabolic pathway to maintain whole-body energy homeostasis, is an iron-demanding process for rapid biogenesis of mitochondria. However, little information is available on iron mobilization from storage sites to thermogenic fat. This study aimed to determine the iron-regulatory network that underlies beige adipogenesis. We hypothesized that thermogenic stimulus initiates the signaling interplay between adipocyte iron demands and systemic iron liberation, resulting in iron redistribution into beige fat. To test this hypothesis, we induced reversible activation of beige adipogenesis in C57BL/6 mice by administering a ß3-adrenoreceptor agonist CL 316,243 (CL). Our results revealed that CL stimulation induced the iron-regulatory protein-mediated iron import into adipocytes, suppressed hepcidin transcription, and mobilized iron from the spleen. Mechanistically, CL stimulation induced an acute activation of hypoxia-inducible factor 2-α (HIF2-α), erythropoietin production, and splenic erythroid maturation, leading to hepcidin suppression. Disruption of systemic iron homeostasis by pharmacological HIF2-α inhibitor PT2385 or exogenous administration of hepcidin-25 significantly impaired beige fat development. Our findings suggest that securing iron availability via coordinated interplay between renal hypoxia and hepcidin down-regulation is a fundamental mechanism to activate adaptive thermogenesis. It also provides an insight into the effects of adaptive thermogenesis on systemic iron mobilization and redistribution.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Hepcidinas/metabolismo , Ferro/metabolismo , Termogênese/fisiologia , Adipócitos/metabolismo , Adipócitos Bege/metabolismo , Adipogenia/fisiologia , Tecido Adiposo Bege/metabolismo , Animais , Regulação para Baixo/fisiologia , Eritropoetina/metabolismo , Homeostase/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Transdução de Sinais/fisiologia
12.
J Nutr ; 151(10): 2967-2975, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34383942

RESUMO

BACKGROUND: Adaptive thermogenesis is an iron-demanding pathway, significantly contributing to whole-body energy expenditure. However, the effects of iron-deficient diets on adaptive thermogenesis and obesity remain unknown. OBJECTIVES: We aimed to determine the impact of dietary iron deficiency on iron homeostasis in adipocytes, adaptive thermogenic capacity, and metabolic consequences in obesity. METHODS: C57BL/6 male mice were assigned to either the iron-adequate (IA, 35 ppm) or the iron-deficient group (ID, 3 ppm) at weaning. Upon 8 wk of age, both IA and ID groups received an isocaloric high-fat diet (45% kcal from fat) for 10 wk, maintaining the same iron content. Mice (n = 8) were used to determine the iron status at the systemic and tissue levels and lipid metabolism and inflammatory signaling in adipose tissue. The same mice were used to evaluate cold tolerance (4°C) for 3 h. For assessing adaptive thermogenesis, mice (n = 5) received an intraperitoneal injection of ß3-adrenoceptor agonist CL316243 (CL) for 5 d. RESULTS: Compared with the IA group, the ID group had nonanemic iron deficiency, lower serum ferritin (42.8%, P < 0.01), and greater weight gain (8.67%, P < 0.05) and insulin resistance (159%, P < 0.01), partly due to reduced AMP-activated protein kinase activation (61.0%, P < 0.05). Upon cold exposure, the ID group maintained a core body temperature 2°C lower than the IA group. The ID group had lower iron content (47.0%, P < 0.01) in the inguinal adipose tissue (iWAT) than the IA group, which was associated with impaired adaptive thermogenesis. In response to CL, ID mice showed decreased heat production (P < 0.01) and defective upregulation of beige adipocyte-specific markers, including uncoupling protein 1 (41.1%, P < 0.001), transferrin receptor 1 (47.5%, P < 0.001), and mitochondrial respiratory chain complexes (P < 0.05) compared with IA mice. CONCLUSIONS: Dietary iron deficiency deregulates iron balance in the iWAT and impairs adaptive thermogenesis, thereby escalating the diet-induced weight gain in C57BL/6 mice.


Assuntos
Tecido Adiposo Branco , Deficiências de Ferro , Adipócitos , Tecido Adiposo Branco/metabolismo , Animais , Dieta Hiperlipídica/efeitos adversos , Metabolismo Energético , Homeostase , Ferro/metabolismo , Ferro da Dieta/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Termogênese
13.
Biomedicines ; 9(2)2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33671880

RESUMO

Urolithin A (UroA) is a gut metabolite produced from ellagic acid-containing foods such as pomegranates, berries, and walnuts. UroA is of growing interest due to its therapeutic potential for various metabolic diseases based on immunomodulatory properties. Recent advances in UroA research suggest that UroA administration attenuates inflammation in various tissues, including the brain, adipose, heart, and liver tissues, leading to the potential delay or prevention of the onset of Alzheimer's disease, type 2 diabetes mellitus, and non-alcoholic fatty liver disease. In this review, we focus on recent updates of the anti-inflammatory function of UroA and summarize the potential mechanisms by which UroA may help attenuate the onset of diseases in a tissue-specific manner. Therefore, this review aims to shed new insights into UroA as a potent anti-inflammatory molecule to prevent immunometabolic diseases, either by dietary intervention with ellagic acid-rich food or by UroA administration as a new pharmaceutical drug.

14.
J Biol Chem ; 296: 100452, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33631196

RESUMO

The development of thermogenic adipocytes concurs with mitochondrial biogenesis, an iron-dependent pathway. Iron regulatory proteins (IRP) 1 and 2 are RNA-binding proteins that regulate intracellular iron homeostasis. IRPs bind to the iron-response element (IRE) of their target mRNAs, balancing iron uptake and deposition at the posttranscriptional levels. However, IRP/IRE-dependent iron regulation in adipocytes is largely unknown. We hypothesized that iron demands are higher in brown/beige adipocytes than white adipocytes to maintain the thermogenic mitochondrial capacity. To test this hypothesis, we investigated the IRP/IRE regulatory system in different depots of adipose tissue. Our results revealed that 1) IRP/IRE interaction was increased in proportional to the thermogenic function of the adipose depot, 2) adipose iron content was increased in adipose tissue browning upon ß3-adrenoceptor stimulation, while decreased in thermoneutral conditions, and 3) modulation of iron content was linked with mitochondrial biogenesis. Moreover, the iron requirement was higher in HIB1B brown adipocytes than 3T3-L1 white adipocytes during differentiation. The reduction of the labile iron pool (LIP) suppressed the differentiation of brown/beige adipocytes and mitochondrial biogenesis. Using the 59Fe-Tf, we also demonstrated that thermogenic stimuli triggered cell-autonomous iron uptake and mitochondrial compartmentalization as well as enhanced mitochondrial respiration. Collectively, our work demonstrated that IRP/IRE signaling and subsequent adaptation in iron metabolism are a critical determinant for the thermogenic function of adipocytes.


Assuntos
Aconitato Hidratase/metabolismo , Adipócitos/metabolismo , Ferro/metabolismo , Termogênese/fisiologia , Células 3T3-L1 , Aclimatação , Adipócitos Bege/metabolismo , Adipócitos Marrons/metabolismo , Adipócitos Brancos/metabolismo , Animais , Regulação da Temperatura Corporal/fisiologia , Diferenciação Celular , Homeostase , Proteína 1 Reguladora do Ferro/genética , Proteína 1 Reguladora do Ferro/metabolismo , Proteína 2 Reguladora do Ferro/genética , Proteína 2 Reguladora do Ferro/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Biogênese de Organelas , RNA Mensageiro/metabolismo , Transdução de Sinais
15.
Artigo em Inglês | MEDLINE | ID: mdl-33374120

RESUMO

Whole red raspberry polyphenols (RRW), including ellagic acid, and their gut-derived metabolite, urolithin A (UroA), attenuate inflammation and confer health benefits. Although results from recent studies indicate that polyphenols and UroA also provide neuroprotective effects, these compounds differ in their bioavailability and may, therefore, have unique effects on limiting neuroinflammation. Accordingly, we aimed to compare the neuroprotective effects of RRW and UroA on BV-2 microglia under both 3 h and 12 and 24 h inflammatory conditions. In inflammation induced by lipopolysaccharide (LPS) and ATP stimulation after 3 h, RRW and UroA suppressed pro-inflammatory cytokine gene expression and regulated the JNK/c-Jun signaling pathway. UroA also reduced inducible nitric oxide synthase gene expression and promoted M2 microglial polarization. During inflammatory conditions induced by either 12 or 24 h stimulation with LPS, UroA-but not RRW-dampened pro-inflammatory cytokine gene expression and suppressed JNK/c-Jun signaling. Taken together, these results demonstrate that RRW and its gut-derived metabolite UroA differentially regulate neuroprotective responses in microglia during 3 h versus 12 and 24 h inflammatory conditions.


Assuntos
Cumarínicos/farmacologia , Microbioma Gastrointestinal , Microglia/efeitos dos fármacos , Polifenóis/farmacologia , Rubus/química , Células Cultivadas , Citocinas/metabolismo , Humanos , Inflamação/induzido quimicamente , Inflamação/metabolismo , Lipopolissacarídeos/toxicidade , Óxido Nítrico Sintase/metabolismo , Transdução de Sinais
16.
Int J Mol Sci ; 21(17)2020 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-32854424

RESUMO

Selective autolysosomal degradation of damaged mitochondria, also called mitophagy, is an indispensable process for maintaining integrity and homeostasis of mitochondria. One well-established mechanism mediating selective removal of mitochondria under relatively mild mitochondria-depolarizing stress is PINK1-Parkin-mediated or ubiquitin-dependent mitophagy. However, additional mechanisms such as LC3-mediated or ubiquitin-independent mitophagy induction by heavy environmental stress exist and remain poorly understood. The present study unravels a novel role of stress-inducible protein Sestrin2 in degradation of mitochondria damaged by transition metal stress. By utilizing proteomic methods and studies in cell culture and rodent models, we identify autophagy kinase ULK1-mediated phosphorylation sites of Sestrin2 and demonstrate Sestrin2 association with mitochondria adaptor proteins in HEK293 cells. We show that Ser-73 and Ser-254 residues of Sestrin2 are phosphorylated by ULK1, and a pool of Sestrin2 is strongly associated with mitochondrial ATP5A in response to Cu-induced oxidative stress. Subsequently, this interaction promotes association with LC3-coated autolysosomes to induce degradation of mitochondria damaged by Cu-induced ROS. Treatment of cells with antioxidants or a Cu chelator significantly reduces Sestrin2 association with mitochondria. These results highlight the ULK1-Sestrin2 pathway as a novel stress-sensing mechanism that can rapidly induce autophagic degradation of mitochondria under severe heavy metal stress.


Assuntos
Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Cobre/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Mitocôndrias/fisiologia , Proteínas Nucleares/metabolismo , Proteômica/métodos , Autofagia , Sítios de Ligação , Células HEK293 , Humanos , Proteínas Associadas aos Microtúbulos/metabolismo , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Mitofagia , Proteínas Nucleares/química , Estresse Oxidativo , Fosforilação , Transdução de Sinais/efeitos dos fármacos
17.
Int J Sports Med ; 41(7): 427-442, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32252102

RESUMO

Exercise is commonly utilized for weight loss, yet research has focused less on specific modifications to adipose tissue metabolism. White adipose tissue (WAT) is the storage form of fat, whereas brown adipose tissue (BAT) is a thermogenic tissue whose uncoupling increases energy expenditure. The most established BAT activator is cold exposure, which also transforms WAT into "beige cells" that express uncoupling protein 1 (UCP1). Preliminary evidence in rodents suggests exercise elicits similar effects. The purpose of this review is to parallel and examine differences between exercise and cold exposure on BAT activation and beige induction. Like cold exposure, exercise stimulates the sympathetic nervous system and activates molecular pathways responsible for BAT/beige activation, including upregulation of BAT activation markers (UCP1, proliferator-activated receptor-gamma coactivator-1α) and stimulation of endocrine activators (fibroblast growth factor-21, irisin, and natriuretic peptides). Further, certain BAT activators are altered exclusively by exercise (interleukin-6, lactate). Markers of BAT activation increase from both cold exposure and exercise, whereas effects in WAT are compartment-specific. Stimulation of endocrine activators depends on numerous factors, including stimulus intensity and duration. Evidence of these analogous, albeit not mirrored, mechanisms is demonstrated by increases in adipose activity in rodents, while effects remain challenging to quantify in humans.


Assuntos
Tecido Adiposo Marrom/metabolismo , Temperatura Baixa , Exercício Físico/fisiologia , Termogênese , Tecido Adiposo Bege/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Fator Natriurético Atrial/metabolismo , Biomarcadores/metabolismo , Metabolismo Energético , Fatores de Crescimento de Fibroblastos/metabolismo , Fibronectinas/metabolismo , Humanos , Peptídeo Natriurético Encefálico/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Proteína Desacopladora 1/metabolismo
18.
Nutrients ; 12(1)2020 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-31947716

RESUMO

Supplementation with n-3 long-chain (LC) polyunsaturated fatty acids (PUFA) is known to promote thermogenesis via the activation of brown adipose tissue (BAT). Agricultural products that are biofortified with α-linolenic acid (ALA), the precursor of n-3 LC PUFA, have been launched to the market, but their impact on BAT function is unknown. This study aimed to evaluate the effects of ALA-biofortified butter on lipid metabolism and thermogenic functions in the BAT. C57BL/6 mice were fed a high-fat diet containing ALA-biofortified butter (n3Bu, 45% calorie from fat) for ten weeks in comparison with the isocaloric high-fat diets prepared from conventional butter or margarine. The intake of n3Bu significantly reduced the whitening of BAT and increased the thermogenesis in response to acute-cold treatment. Also, n3Bu supplementation is linked with the remodeling of BAT by promoting bioconversion into n-3 LC PUFA, FA elongation and desaturation, and mitochondrial biogenesis. Taken together, our results support that ALA-biofortified butter is a novel source of n-3 PUFA, which potentiates the BAT thermogenic function.


Assuntos
Tecido Adiposo Marrom/efeitos dos fármacos , Manteiga , Ácidos Graxos/metabolismo , Alimentos Fortificados , Termogênese/efeitos dos fármacos , Ácido alfa-Linolênico/farmacologia , Animais , Dieta Hiperlipídica , Ácidos Graxos Ômega-3/metabolismo , Metabolismo dos Lipídeos , Camundongos , Camundongos Endogâmicos C57BL
19.
J Nutr Biochem ; 76: 108285, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31760228

RESUMO

α-Linolenic acid (ALA) is an essential fatty acid and the precursor for long-chain n-3 PUFA. However, biosynthesis of n-3 PUFA is limited in a Western diet likely due to an overabundance of n-6 PUFA. We hypothesized that dietary reduction of n-6/n-3 PUFA ratio is sufficient to promote the biosynthesis of long-chain n-3 PUFA, leading to an attenuation of high fat (HF) diet-induced obesity and inflammation. C57BL/6 J mice were fed a HF diet from ALA-enriched butter (n3Bu, n-6/n-3=1) in comparison with isocaloric HF diets from either conventional butter lacking both ALA and LA (Bu, n-6/n-3=6), or margarine containing a similar amount of ALA and abundant LA (Ma, n-6/n-3=6). Targeted lipidomic analyses revealed that n3Bu feeding promoted the bioconversion of long-chain n-3 PUFA and their oxygenated metabolites (oxylipins) derived from ALA and EPA. The n3Bu supplementation attenuated hepatic TG accumulation and adipose tissue inflammation, resulting in improved insulin sensitivity. Decreased inflammation by n3Bu feeding was attributed to the suppression of NF-κB activation and M1 macrophage polarization. Collectively, our work suggests that dietary reduction of the n-6/n-3 PUFA ratio, as well as total n-3 PUFA consumed, is a crucial determinant that facilitates n-3 PUFA biosynthesis and subsequent lipidomic modifications, thereby conferring metabolic benefits against obesity-induced inflammation and insulin resistance.


Assuntos
Dieta Hiperlipídica , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Insaturados/metabolismo , Resistência à Insulina , Oxilipinas/metabolismo , Ácido alfa-Linolênico/metabolismo , Animais , Ácidos Graxos/metabolismo , Teste de Tolerância a Glucose , Inflamação , Insulina/metabolismo , Lipidômica , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL
20.
Mol Nutr Food Res ; 64(1): e1900925, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31785208

RESUMO

SCOPE: Inflammatory responses to obesity, including interleukin-1 beta (IL-1ß) activation, downregulate mitochondrial function and interfere with adipocyte browning, an important component of energy expenditure. This study investigates the impact of apigenin (Apg), a natural flavonoid with anti-inflammatory properties, on adipocyte browning in the presence of IL-1ß. METHODS AND RESULTS: Apg protects dibutyryl-cAMP-induced browning from IL-1ß in primary human adipocytes, as evidenced by increased brown-specific markers, mitochondrial content, and oxygen consumption. Apg significantly represses inflammatory markers and NF-κB activation induced by IL-1ß in these adipocytes. Intriguingly, Apg profoundly induces cyclooxygenase 2 (COX2) and prostaglandin E2 (PGE2) expression in response to IL-1ß treatment. Conversely, COX2 pharmacological inhibition or RNA silencing attenuates the positive effect of Apg on adipocyte browning in IL-1ß-treated cells. Additionally, blockage of PGE2 receptor 4 (EP4) attenuates Apg-mediated adipocyte browning. The effect of Apg on adipocyte browning in IL-1ß-treated adipocytes is accompanied by an elevation in intracellular Ca2+ , partly due to TRPV1/4 receptor activation. CONCLUSION: Apg plays a protective role against inflammation-induced suppression of adipocyte browning by dampening inflammation and activating the COX2/PGE2 axis for uncoupling protein 1 induction via EP4 activation. These data unravel the novel therapeutic values of Apg for treating obesity via adipocyte browning stimulation.


Assuntos
Adipócitos/efeitos dos fármacos , Apigenina/farmacologia , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Interleucina-1beta/farmacologia , Gordura Abdominal/citologia , Adipócitos/metabolismo , Adipócitos Marrons/efeitos dos fármacos , Adipócitos Marrons/metabolismo , Cálcio/metabolismo , Células Cultivadas , Ciclo-Oxigenase 2/genética , Feminino , Humanos , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA