RESUMO
OBJECTIVE: There is a growing number of monogenic disorders implicated in neurodevelopmental disorders (NDDs), including autism spectrum disorder and intellectual disability. Motor impairment is frequently seen in these disorders, although not clearly defined. We aimed to characterize the motor phenotype of genetic NDDs. METHODS: We analyzed data from Simons Searchlight, collecting information on patients with genetic NDDs. Data analyzed included Vineland Adaptive Behavior Scales Second Edition (Vineland-II) motor standard scores, motor milestones and tone abnormalities. RESULTS: In total, 959 patients with 57 genetic disorders were included. Disorders associated with Vineland-II motor standard score <56 included GRIN2B-related disorder (mean standard score = 53.5), HNRNPH2-related disorder (mean standard score = 55.8) and SCN2A-related disorder (mean standard score = 49.9). The only genetic condition with a mean age of sitting unsupported ≥18 months was GRIN1-related disorder (mean age = 26.3 months). Genetic conditions with a mean age of walking independently ≥36 months included CTNNB1-related disorder (mean age = 37.4 months) and HNRNPH2-related disorder (mean age = 41.9 months). Tone abnormalities included hypotonia in 83% (577/696), hypertonia in 16% (112/696), a diagnosis of cerebral palsy (CP) in 10% (73/696) and a diagnosis specifically of spastic CP in 3% (23/696). INTERPRETATION: Patients with genetic NDDs have a spectrum of motor impairment, which warrant further characterization.
RESUMO
For more than 20 years there has been speculation about a future in which newborns are routinely screened at birth for genetic disorders using genome sequencing, but prospective large-scale studies assessing this vision have only recently begun. Genome sequencing may provide a means of expanding the scope of conditions included in newborn screening programs and improving the positive predictive value of traditional newborn screening. However, the use of genome sequencing for newborn screening has also raised concerns including acceptability, equity, and scalability. By reviewing the initial results of the GUARDIAN study and contrasting them with other pilot studies investigating the use of genome sequencing for large-scale newborn screening, we highlight how the lessons learned from these studies are shaping the future for the implementation of truly universal and equitable newborn genomic screening.
RESUMO
This secondary analysis of a randomized clinical trial reports primary care clinician outcomes of decision support tools for referral of patients with potential BRCA1/2 mutations for genetic counseling.
RESUMO
Importance: The feasibility of implementing genome sequencing as an adjunct to traditional newborn screening (NBS) in newborns of different racial and ethnic groups is not well understood. Objective: To report interim results of acceptability, feasibility, and outcomes of an ongoing genomic NBS study in a diverse population in New York City within the context of the New York State Department of Health Newborn Screening Program. Design, Setting, and Participants: The Genomic Uniform-screening Against Rare Disease in All Newborns (GUARDIAN) study was a multisite, single-group, prospective, observational investigation of supplemental newborn genome screening with a planned enrollment of 100â¯000 participants. Parent-reported race and ethnicity were recorded at the time of recruitment. Results of the first 4000 newborns enrolled in 6 New York City hospitals between September 2022 and July 2023 are reported here as part of a prespecified interim analysis. Exposure: Sequencing of 156 early-onset genetic conditions with established interventions selected by the investigators were screened in all participants and 99 neurodevelopmental disorders associated with seizures were optional. Main Outcomes and Measures: The primary outcome was screen-positive rate. Additional outcomes included enrollment rate and successful completion of sequencing. Results: Over 11 months, 5555 families were approached and 4000 (72.0%) consented to participate. Enrolled participants reflected a diverse group by parent-reported race (American Indian or Alaska Native, 0.5%; Asian, 16.5%; Black, 25.1%; Native Hawaiian or Other Pacific Islander, 0.1%; White, 44.7%; 2 or more races, 13.0%) and ethnicity (Hispanic, 44.0%; not Hispanic, 56.0%). The majority of families consented to screening of both groups of conditions (both groups, 90.6%; disorders with established interventions only, 9.4%). Testing was successfully completed for 99.6% of cases. The screen-positive rate was 3.7%, including treatable conditions that are not currently included in NBS. Conclusions and Relevance: These interim findings demonstrate the feasibility of targeted interpretation of a predefined set of genes from genome sequencing in a population of different racial and ethnic groups. DNA sequencing offers an additional method to improve screening for conditions already included in NBS and to add those that cannot be readily screened because there is no biomarker currently detectable in dried blood spots. Additional studies are required to understand if these findings are generalizable to populations of different racial and ethnic groups and whether introduction of sequencing leads to changes in management and improved health outcomes. Trial Registration: ClinicalTrials.gov Identifier: NCT05990179.
RESUMO
Idiopathic osteoporosis (IOP) is a rare form of early-onset osteoporosis diagnosed in patients with no known metabolic or hormonal cause of bone loss and unknown pathogenesis. Patients with IOP commonly report both childhood fractures and family history of osteoporosis, raising the possibility of genetic etiologies of IOP. Whole-exome sequencing analyses of different IOP cohorts identified multiple variants in melatonin receptor 1A (MTNR1A) with a potential pathogenic outcome. A rare MTNR1A variant (rs374152717) was found in members of an Ashkenazi Jewish family with IOP, and an MTNR1A variant (rs28383653) was found in a nonrelated female IOP cohort (4%). Both variants occur at a substantially higher frequency in Ashkenazi Jewish individuals than in the general population. We investigated consequences of the heterozygous (rs374152717) variant [MTNR1Ac.184+1G>T (MTNR1Ac.184+1G>T)] on bone physiology. A mouse model of the human rs374152717 variant reproduced the low bone mass (BM) phenotype of young-adult patients with IOP. Low BM occurred because of induction of senescence in mutant osteoblasts followed by compromised differentiation and function. In human cells, introduction of rs374152717 led to translation of a nonfunctional protein and subsequent dysregulation of melatonin signaling. These studies provide evidence that MTNR1A mutations entail a genetic etiology of IOP and establish the rs374152717 variant as a loss-of-function allele that impairs bone turnover by inducing senescence in osteoblasts. The higher prevalence of the MTNR1A variants identified in IOP cohorts versus the general population indicates a greater risk of IOP in those carrying these variants, especially Ashkenazi Jewish individuals bearing the rs374152717 variant.
Assuntos
Osteoporose , Receptor MT1 de Melatonina , Humanos , Animais , Osteoporose/genética , Receptor MT1 de Melatonina/genética , Receptor MT1 de Melatonina/metabolismo , Feminino , Masculino , Camundongos , Predisposição Genética para Doença , Osteoblastos/metabolismo , Osteoblastos/patologia , Adulto , Senescência Celular/genética , Variação Genética , Diferenciação Celular/genética , Sequenciamento do ExomaRESUMO
BACKGROUND: Breast cancer (BC) incidence is increasing in women under age 40 years, underscoring the need for research on BC risk factors for younger women. METHODS: We used data from an international family cohort (n=26,348) to examine whether recreational physical activity (RPA) during adolescence and early adulthood are associated with BC risk before age 40. The cohort includes 2,502 women diagnosed with BC before age 40, including 2,408 diagnosed before study enrollment (68% within 5 years of enrollment). Women reported their average hours-per-week of moderate and strenuous RPA during adolescence (12-17 years) and early adulthood (25-34 years), which were converted to total age-adjusted metabolic equivalents-per-week and categorized into quartiles. We conducted attained age analyses until age 40 (follow-up time began at age 18) using Cox proportional hazards regression models adjusted for study center, race and ethnicity, and education. RESULTS: Being in the highest versus lowest quartile of RPA during adolescence and early adulthood were respectively associated with 12% [HR (95% CI): 0.88 (0.78, 0.98)] and 16% [HR (95% CI): 0.84 (0.74, 0.95) lower BC risks before age 40. Being in the highest quartile of RPA during both adolescence and early adulthood (Pearson correlation=0.52) versus neither timepoint was associated with a 22% lower risk [HR (95% CI): 0.78 (0.68, 0.89)]. CONCLUSIONS: Findings suggest that RPA during adolescence and early adulthood may lower BC risk before age 40. IMPACT: Policies promoting physical activity during adolescence and early adulthood may be important for reducing the growing burden of breast cancer in younger women.
RESUMO
This case report describes a patient in their late 30s with a history of transketolase deficiency who presented with a new diagnosis of squamous cell carcinoma.
RESUMO
Rationale: Approximately 80% of patients with non-familial pulmonary arterial hypertension (PAH) lack identifiable pathogenic genetic variants. While most genetic studies of PAH have focused on predicted loss-of-function variants, recent approaches have identified ultra-rare missense variants associated with the disease. FOXF1 encodes a highly conserved transcription factor, essential for angiogenesis and vasculogenesis in human and mouse lungs. Objectives: We identified a rare FOXF1 missense coding variant in two unrelated probands with PAH. FOXF1 is an evolutionarily conserved transcription factor required for lung vascular development and vascular integrity. Our aims were to determine the frequency of FOXF1 variants in larger PAH cohorts compared to the general population, study FOXF1 expression in explanted lung tissue from PAH patients versus control (failed-donor) lungs, and define potential downstream targets linked to PAH development. Methods: Three independent, international, multicenter cohorts were analyzed to evaluate the frequency of FOXF1 rare variants. Various composite prediction models assessed the deleteriousness of individual variants. Bulk RNA sequencing datasets from human explanted lung tissues were compared to failed-donor controls to determine FOXF1 expression. Bioinformatic tools identified putative FOXF1 binding targets, which were orthogonally validated using mouse ChIP-seq datasets. Measurements and Main Results: Seven novel or ultra-rare missense coding variants were identified across three patient cohorts in different regions of the FOXF1 gene, including the DNA binding domain. FOXF1 expression was dysregulated in PAH lungs, correlating with disease severity. Histological analysis showed heterogeneous FOXF1 expression, with the lowest levels in phenotypically abnormal endothelial cells within complex vascular lesions in PAH samples. A hybrid bioinformatic approach identified FOXF1 downstream targets potentially involved in PAH pathogenesis, including BMPR2 . Conclusions: Large genomic and transcriptomic datasets suggest that decreased FOXF1 expression or predicted dysfunction is associated with PAH.
RESUMO
Introduction: Congenital anomalies of the kidney and urinary tract (CAKUT) represent the most common cause of chronic kidney disease in children. Although only 20% of cases can be genetically explained, the majority remain without an identified underlying etiology. The neurodevelopmental disorder Chung-Jansen syndrome (CHUJANS) is caused by haploinsufficiency of Pleckstrin homology domain-interacting protein (PHIP) and was previously associated with genital malformations. Anecdotal coincidence of CHUJANS and CAKUT prompted us to investigate whether urorenal malformations are part of the phenotypic spectrum of CHUJANS. Methods: Analysis of existing CHUJANS and CAKUT cohorts, consulting matchmaking platforms, and systematic literature review to look for additional patients with both CHUJANS and CAKUT. Prenatal expression studies in murine and human renal tissues to investigate the role for PHIP in kidney development. Results: We identified 4 novel and 8 published cases, indicating variable expressivity with a urorenogenital trait frequency of 5% to 35%. The prenatal expression studies supported a role for PHIP in normal kidney and urinary tract development. Conclusion: Pathogenic PHIP gene variants should be considered as causative in patients with syndromal CAKUT. Conversely, patients with CHUJANS should be clinically evaluated for urorenogenital manifestations. Because neurodevelopmental disorders are often associated with kidney phenotypes, an interdisciplinary re-evaluation offers promise in identifying incompletely penetrant kidney associations and uncovering novel molecular mechanisms of disturbed nephrogenesis.
RESUMO
While all eukaryotic cells are dependent on mitochondria for function, in a complex tissue, which cell type and which cell behavior are more sensitive to mitochondrial deficiency remain unpredictable. Here, we show that in the mouse airway, compromising mitochondrial function by inactivating mitochondrial protease gene Lonp1 led to reduced progenitor proliferation and differentiation during development, apoptosis of terminally differentiated ciliated cells and their replacement by basal progenitors and goblet cells during homeostasis, and failed airway progenitor migration into damaged alveoli following influenza infection. ATF4 and the integrated stress response (ISR) pathway are elevated and responsible for the airway phenotypes. Such context-dependent sensitivities are predicted by the selective expression of Bok, which is required for ISR activation. Reduced LONP1 expression is found in chronic obstructive pulmonary disease (COPD) airways with squamous metaplasia. These findings illustrate a cellular energy landscape whereby compromised mitochondrial function could favor the emergence of pathological cell types.
Assuntos
Diferenciação Celular , Mitocôndrias , Proteínas Mitocondriais , Células-Tronco , Animais , Mitocôndrias/metabolismo , Camundongos , Proteínas Mitocondriais/metabolismo , Células-Tronco/metabolismo , Células-Tronco/citologia , Proteases Dependentes de ATP/metabolismo , Proteases Dependentes de ATP/genética , Doença Pulmonar Obstrutiva Crônica/patologia , Doença Pulmonar Obstrutiva Crônica/metabolismo , Humanos , Proliferação de Células , Camundongos Endogâmicos C57BL , ApoptoseRESUMO
KIF1A-associated neurological disorder (KAND) is a neurodegenerative and often lethal ultrarare disease with a wide phenotypic spectrum associated with largely heterozygous de novo missense variants in KIF1A. Antisense oligonucleotide treatments represent a promising approach for personalized treatments in ultrarare diseases. Here we report the case of one patient with a severe form of KAND characterized by refractory spells of behavioral arrest and carrying a p.Pro305Leu variant in KIF1A, who was treated with intrathecal injections of an allele-specific antisense oligonucleotide specifically designed to degrade the mRNA from the pathogenic allele. The first intrathecal administration was complicated by an epidural cerebrospinal fluid collection, which resolved spontaneously. Otherwise, the antisense oligonucleotide was safe and well tolerated over the 9-month treatment. Most outcome measures, including severity of the spells of behavioral arrest, number of falls and quality of life, improved. There was little change in the 6-min Walk Test distance, but qualitative changes in gait resulting in meaningful reductions in falls and increasing independence were observed. Cognitive performance was stable and did not degenerate over time. Our findings provide preliminary insights on the safety and efficacy of an allele-specific antisense oligonucleotide as a possible treatment for KAND.
Assuntos
Cinesinas , Oligonucleotídeos Antissenso , Humanos , Cinesinas/genética , Oligonucleotídeos Antissenso/uso terapêutico , Masculino , Doenças do Sistema Nervoso/genética , Alelos , Feminino , Injeções EspinhaisRESUMO
Considerable progress has been made in the genomics of pulmonary arterial hypertension (PAH) since the 6th World Symposium on Pulmonary Hypertension, with the identification of rare variants in several novel genes, as well as common variants that confer a modest increase in PAH risk. Gene and variant curation by an expert panel now provides a robust framework for knowing which genes to test and how to interpret variants in clinical practice. We recommend that genetic testing be offered to specific subgroups of symptomatic patients with PAH, and to children with certain types of group 3 pulmonary hypertension (PH). Testing of asymptomatic family members and the use of genetics in reproductive decision-making require the involvement of genetics experts. Large cohorts of PAH patients with biospecimens now exist and extension to non-group 1 PH has begun. However, these cohorts are largely of European origin; greater diversity will be essential to characterise the full extent of genomic variation contributing to PH risk and treatment responses. Other types of omics data are also being incorporated. Furthermore, to advance gene- and pathway-specific care and targeted therapies, gene-specific registries will be essential to support patients and their families and to lay the foundation for genetically informed clinical trials. This will require international outreach and collaboration between patients/families, clinicians and researchers. Ultimately, harmonisation of patient-derived biospecimens, clinical and omic information, and analytic approaches will advance the field.
Assuntos
Testes Genéticos , Genômica , Hipertensão Pulmonar , Humanos , Hipertensão Pulmonar/genética , Medicina de Precisão , Predisposição Genética para DoençaRESUMO
Background: Heterozygous variants in Transient receptor potential melastatin type 7 (TRPM7), encoding an essential and ubiquitously expressed cation channel, may cause hypomagnesemia, but current evidence is insufficient to draw definite conclusions and it is unclear whether any other phenotypes can occur. Methods: Individuals with unexplained hypomagnesemia underwent whole-exome sequencing which identified TRPM7 variants. Pathogenicity of the identified variants was assessed by combining phenotypic, functional and in silico analyses. Results: We report three new heterozygous missense variants in TRPM7 (p.Met1000Thr, p.Gly1046Arg, p.Leu1081Arg) in individuals with hypomagnesemia. Strikingly, autism spectrum disorder and developmental delay, mainly affecting speech and motor skills, was observed in all three individuals, while two out of three also presented with seizures. The three variants are predicted to be severely damaging by in silico prediction tools and structural modeling. Furthermore, these variants result in a clear loss-of-function of TRPM7-mediated magnesium uptake in vitro, while not affecting TRPM7 expression or insertion into the plasma membrane. Conclusions: This study provides additional evidence for the association between heterozygous TRPM7 variants and hypomagnesemia and adds developmental delay to the phenotypic spectrum of TRPM7-related disorders. Considering that the TRPM7 gene is relatively tolerant to loss-of-function variants, future research should aim to unravel by what mechanisms specific heterozygous TRPM7 variants can cause disease.
RESUMO
Protein phosphatase 2 regulatory subunit B56δ related neurodevelopmental disorder (PPP2R5D-related NDD) is largely caused by de novo heterozygous missense PPP2R5D variants. We report medical characteristics, longitudinal adaptive functioning, and in-person neurological, motor, cognitive, and electroencephalogram (EEG) activity for PPP2R5D-related NDD. Forty-two individuals (median age 6 years, range = 0.8-25.3) with pathogenic/likely pathogenic PPP2R5D variants were assessed, and almost all variants were missense (97.6%) and de novo (85.7%). Common clinical symptoms were developmental delay, hypotonia, macrocephaly, seizures, autism, behavioral challenges, and sleep problems. The mean Gross motor functional measure-66 was 60.2 ± 17.3% and the mean Revised upper limb module score was 25.9 ± 8.8. The Vineland-3 adaptive behavior composite score (VABS-3 ABC) at baseline was low (M = 61.7 ± 16.8). VABS-3 growth scale value scores increased from baseline in all subdomains (range = 0.6-5.9) after a mean follow-up of 1.3 ± 0.3 years. EEG beta and gamma power were negatively correlated with VABS-3 score; p < 0.05. Individuals had a mean Quality-of-life inventory-disability score of 74.7 ± 11.4. Twenty caregivers (80%) had a risk of burnout based on the Caregiver burden inventory. Overall, the most common clinical manifestations of PPP2R5D-related NDD were impaired cognitive, adaptive function, and motor skills; and EEG activity was associated with adaptive functioning. This clinical characterization describes the natural history in preparation for clinical trials.
RESUMO
Importance: Few studies have investigated whether the associations between pregnancy-related factors and breast cancer (BC) risk differ by underlying BC susceptibility. Evidence regarding variation in BC risk is critical to understanding BC causes and for developing effective risk-based screening guidelines. Objective: To examine the association between pregnancy-related factors and BC risk, including modification by a of BC where scores are based on age and BC family history. Design, Setting, and Participants: This cohort study included participants from the prospective Family Study Cohort (ProF-SC), which includes the 6 sites of the Breast Cancer Family Registry (US, Canada, and Australia) and the Kathleen Cuningham Foundation Consortium (Australia). Analyses were performed in a cohort of women enrolled from 1992 to 2011 without any personal history of BC who were followed up through 2017 with a median (range) follow-up of 10 (1-23) years. Data were analyzed from March 1992 to March 2017. Exposures: Parity, number of full-term pregnancies (FTP), age at first FTP, years since last FTP, and breastfeeding. Main Outcomes and Measures: BC diagnoses were obtained through self-report or report by a first-degree relative and confirmed through pathology and data linkages. Cox proportional hazards regression models estimated hazard ratios (HR) and 95% CIs for each exposure, examining modification by PARS of BC. Differences were assessed by estrogen receptor (ER) subtype. Results: The study included 17â¯274 women (mean [SD] age, 46.7 [15.1] years; 791 African American or Black participants [4.6%], 1399 Hispanic or Latinx participants [8.2%], and 13â¯790 White participants [80.7%]) with 943 prospectively ascertained BC cases. Compared with nulliparous women, BC risk was higher after a recent pregnancy for those women with higher PARS (last FTP 0-5 years HR for interaction, 1.53; 95% CI, 1.13-2.07; P for interaction < .001). Associations between other exposures were limited to ER-negative disease. ER-negative BC was positively associated with increasing PARS and increasing years since last FTP (P for interaction < .001) with higher risk for recent pregnancy vs nulliparous women (last FTP 0-5 years HR for interaction, 1.54; 95% CI, 1.03-2.31). ER-negative BC was positively associated with increasing PARS and being aged 20 years or older vs less than 20 years at first FTP (P for interaction = .002) and inversely associated with multiparity vs nulliparity (P for interaction = .01). Conclusions and Relevance: In this cohort study of women with no prior BC diagnoses, associations between pregnancy-related factors and BC risk were modified by PARS, with greater associations observed for ER-negative BC.
Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/genética , Neoplasias da Mama/epidemiologia , Gravidez , Adulto , Pessoa de Meia-Idade , Estudos Prospectivos , Fatores de Risco , Austrália/epidemiologia , Canadá/epidemiologia , Paridade , Estados Unidos/epidemiologia , Sistema de Registros , Predisposição Genética para Doença , Estudos de Coortes , Aleitamento Materno/estatística & dados numéricosRESUMO
BACKGROUND: Cherubism is most commonly caused by rare heterozygous gain-of-function (GOF) missense variants in SH3BP2, which appear to signal through phospholipase C gamma 2 (PLCG2) to cause excessive osteoclast activity leading to expansile lesions in facial bones in childhood. GOF variants in PLCG2 lead to autoinflammatory PLCG2-associated antibody deficiency and immune dysregulation (autoinflammatory PLAID, or PLAID-GOF), characterized by variably penetrant autoinflammatory, autoimmune, infectious, and atopic manifestations. Cherubism has not been reported in PLAID to date. OBJECTIVE: We determined whether GOF PLCG2 variants may be associated with cherubism. METHODS: Clinical, laboratory, and genomic data from 2 patients with cherubism and other clinical symptoms observed in patients with PLCG2 variants were reviewed. Primary B-cell receptor-induced calcium flux was assessed by flow cytometry. RESULTS: Two patients with lesions consistent with cherubism but no SH3BP2 variants were found to have rare PLCG2 variants previously shown to be GOF in vitro, leading to increased primary B-cell receptor-induced calcium flux in one patient's B cells. Variable humoral defects, autoinflammatory rash, and other clinical and laboratory findings consistent with PLAID were observed as well. CONCLUSION: GOF PLCG2 variants likely represent a novel genetic driver of cherubism and should be assessed in SH3BP2-negative cases. Expansile bony lesions expand the phenotypic landscape of autoinflammatory PLAID, and bone imaging should be considered in PLAID patients.
RESUMO
BACKGROUND: NOTCH3 encodes a transmembrane receptor critical for vascular smooth muscle cell function. NOTCH3 variants are the leading cause of hereditary cerebral small vessel disease (SVD). While monoallelic cysteine-involving missense variants in NOTCH3 are well-studied in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), patients with biallelic variants in NOTCH3 are extremely rare and not well characterised. METHODS: In this study, we present clinical and genetic data from 25 patients with biallelic NOTCH3 variants and conduct a literature review of another 25 cases (50 patients in total). Brain magnetic resonance imaging (MRI) were analysed by expert neuroradiologists to better understand the phenotype associated with biallelic NOTCH3 variants. FINDINGS: Our systematic analyses verified distinct genotype-phenotype correlations for the two types of biallelic variants in NOTCH3. Biallelic loss-of-function variants (26 patients) lead to a neurodevelopmental disorder characterised by spasticity, childhood-onset stroke, and periatrial white matter volume loss resembling periventricular leukomalacia. Conversely, patients with biallelic cysteine-involving missense variants (24 patients) fall within CADASIL spectrum phenotype with early adulthood onset stroke, dementia, and deep white matter lesions without significant volume loss. White matter lesion volume is comparable between patients with biallelic cysteine-involving missense variants and individuals with CADASIL. Notably, monoallelic carriers of loss-of-function variants are predominantly asymptomatic, with only a few cases reporting nonspecific headaches. INTERPRETATION: We propose a NOTCH3-SVD classification depending on dosage and variant type. This study not only expands our knowledge of biallelic NOTCH3 variants but also provides valuable insight into the underlying mechanisms of the disease, contributing to a more comprehensive understanding of NOTCH3-related SVD. FUNDING: The Wellcome Trust, the MRC.
Assuntos
Alelos , Estudos de Associação Genética , Imageamento por Ressonância Magnética , Receptor Notch3 , Receptor Notch3/genética , Humanos , Feminino , Masculino , Adulto , Pessoa de Meia-Idade , CADASIL/genética , CADASIL/diagnóstico por imagem , CADASIL/patologia , Fenótipo , Idoso , Mutação de Sentido Incorreto , Predisposição Genética para Doença , Adulto Jovem , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , AdolescenteRESUMO
Although rare diseases individually have a low prevalence, they collectively affect nearly 400 million individuals around the world. On average, it takes five years for an accurate rare disease diagnosis, but many patients remain undiagnosed or misdiagnosed. As machine learning technologies have been used to aid diagnostics in the past, this study aims to test ChatGPT's suitability for rare disease diagnostic support with the enhancement provided by Retrieval Augmented Generation (RAG). RareDxGPT, our enhanced ChatGPT model, supplies ChatGPT with information about 717 rare diseases from an external knowledge resource, the RareDis Corpus, through RAG. In RareDxGPT, when a query is entered, the three documents most relevant to the query in the RareDis Corpus are retrieved. Along with the query, they are returned to ChatGPT to provide a diagnosis. Additionally, phenotypes for thirty different diseases were extracted from free text from PubMed's Case Reports. They were each entered with three different prompt types: "prompt", "prompt + explanation" and "prompt + role play." The accuracy of ChatGPT and RareDxGPT with each prompt was then measured. With "Prompt", RareDxGPT had a 40 % accuracy, while ChatGPT 3.5 got 37 % of the cases correct. With "Prompt + Explanation", RareDxGPT had a 43 % accuracy, while ChatGPT 3.5 got 23 % of the cases correct. With "Prompt + Role Play", RareDxGPT had a 40 % accuracy, while ChatGPT 3.5 got 23 % of the cases correct. To conclude, ChatGPT, especially when supplying extra domain specific knowledge, demonstrates early potential for rare disease diagnosis with adjustments.
Assuntos
Aprendizado de Máquina , Doenças Raras , Doenças Raras/diagnóstico , Humanos , Armazenamento e Recuperação da Informação/métodos , Mineração de Dados/métodos , Bases de Dados Factuais , Algoritmos , Diagnóstico por Computador/métodosRESUMO
PURPOSE: To define the ophthalmic manifestations in KIF1A-associated neurologic disorder (KAND), a rare, progressive neurodegenerative disorder caused by pathogenic variants in the KIFA1 gene. DESIGN: Cross-sectional study. METHODS: Clinical ophthalmic examination and multimodal imaging were performed for 24 participants enrolled in the KIF1AOutcome measures, Assessments, Longitudinal And endpoints (KOALA) Study. Visual evoked potentials (VEPs) were performed on select participants. RESULTS: The average central visual acuity in pediatric participants was 20/43 (logMAR 0.329, range 0.0-1.0) and 20/119 (logMAR 0.773, range 0.471-1.351) in adults. Ninety-five percent of participants examined had some degree of optic nerve atrophy detected by clinical examination and/or optical coherence tomography (OCT). Almost 40% had strabismus. Color vision, visual fields, and stereopsis were impaired in most participants who were able to participate in testing. VEP showed varying degrees of signal slowing and diffuseness. CONCLUSIONS: Optic nerve atrophy is the primary ocular finding in individuals with KAND and is present at higher prevalence than previously reported. The degree of the atrophy is likely dependent on the severity of the pathogenic variant and possibly the age of the patient. Adults had worse vision on average than children, suggesting possible decline in vision with age. Strabismus in this cohort was common. VEPs showed findings consistent with optic neuropathy and visual dysfunction even in the absence of obvious structural changes on OCT. Families should be counseled regarding visual impairment in KAND patients, so as to obtain appropriate support and assistance to maximize safety, functionality, and learning.
RESUMO
Haploinsufficiency for GATA6 is associated with congenital heart disease (CHD) with variable comorbidity of pancreatic or diaphragm defects, although the etiology of disease is not well understood. Here, we used cardiac directed differentiation from human embryonic stem cells (hESCs) as a platform to study GATA6 function during early cardiogenesis. GATA6 loss-of-function hESCs had a profound impairment in cardiac progenitor cell (CPC) specification and cardiomyocyte (CM) generation due to early defects during the mesendoderm and lateral mesoderm patterning stages. Profiling by RNA-seq and CUT&RUN identified genes of the WNT and BMP programs regulated by GATA6 during early mesoderm patterning. Furthermore, interactome analysis detected GATA6 binding with developmental transcription factors and chromatin remodelers suggesting cooperative regulation of cardiac lineage gene accessibility. We show that modulating WNT and BMP inputs during the first 48 hours of cardiac differentiation is sufficient to partially rescue CPC and CM defects in GATA6 heterozygous and homozygous mutant hESCs. This study provides evidence of the regulatory functions for GATA6 directing human precardiac mesoderm patterning during the earliest stages of cardiogenesis to further our understanding of haploinsufficiency causing CHD and the co-occurrence of cardiac and other organ defects caused by human GATA6 mutations.