Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Cell Neurosci ; 15: 713336, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34744630

RESUMO

Glioma, the most common subtype of primary brain tumor, is an aggressive and highly invasive neurologically tumor among human cancers. Interleukin-33 (IL-33) is considered as a dual functional cytokine, an alarmin upon tissue damage and a nuclear chromatin-associated protein. Despite that, IL-33 is known to foster the formation of the inflammatory tumor microenvironment and facilitate glioma progression, evidence showing nuclear IL-33 function is still poor. In this study using lentivirus-mediated IL-33 gene knockdown (IL33KD) and IL-33 overexpression (IL33oe) in rat C6 glioma cells and human glioma cell lines (U251MG and U87MG), we found that IL33oe-glioma cells had resistance to the insults of the alkylating agent, temozolomide (TMZ), possibly because of the increased expression of DNA repair genes (i.e., BRCA1, BRCA2, Rad51, FANCB, and FANCD) in IL33oe-glioma cells. Alternatively, examination of glioma nuclear shape from transmission electron microscopy (TEM) imaging analysis and immunofluorescence for histone protein H2A staining showed that IL33KD attenuated the abnormal cancerous nuclear characteristic, such as indentation, long clefts, and multiple nucleoids. Yet, IL33oe promoted the changes in glioma nuclear shapes, such as the formation of multiple lobes. We further found that histone proteins, H2A and H3, were reduced in IL33KD glioma cells. The non-histone DNA-binding nucleoproteins, the high mobility group A1 (HMGA1) and HMGA2, were also downregulated by IL33KD. In contrast, IL33oe increased H2A and H3 proteins and HMGA1 and HMGA2 in glioma cells. Altogether, the upregulation of nuclear IL-33 expression was along with an increase in the expression of DNA repair genes, contributing to the desensitization of glioma cells to DNA damaging agents. Moreover, nuclear IL-33 proteins in cooperation with chromatin-associated proteins regulate glioma nuclear structure, which might be crucial for glioma progression and malignancy.

2.
J Mol Neurosci ; 70(7): 1140-1152, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32170713

RESUMO

Many protein aggregation diseases (PAD) affect the nervous system. Deposits of aggregated disease-specific proteins are found within or around the neuronal cells of neurodegenerative diseases. Although the main protein component is disease-specific, oligomeric aggregates are presumed to be the key agents causing the neurotoxicity. Evidence has shown that protein aggregates cause a chronic inflammatory reaction in the brain, resulting in neurodegeneration. Therefore, strategies targeting anti-inflammation could be beneficial to the therapeutics of PAD. PHA-767491 was originally identified as an inhibitor of CDC7/CDK9 and was found to reduce TDP-43 phosphorylation and prevent neurodegeneration in TDP-43 transgenic animals. We recently identified PHA-767491 as a GSK-3ß inhibitor. In this study, we established mouse hippocampal primary culture with tau-hyperphosphorylation through the activation of GSK-3ß using Wortmannin and GF109203X. We found that PHA-767491 significantly improved the neurite outgrowth of hippocampal primary neurons against the neurotoxicity induced by GSK-3ß. We further showed that PHA-767491 had neuroprotective ability in hippocampal primary culture under oligomeric Aß treatment. In addition, PHA-767491 attenuated the neuroinflammation in mouse cerebellar slice culture with human TBP-109Q agitation. Further study of SCA17 transgenic mice carrying human TBP-109Q showed that PHA-767491 ameliorated the gait ataxia and the inflammatory response both centrally and peripherally. Our findings suggest that PHA-767491 has a broad spectrum of activity in the treatment of different PAD and that this activity could be based on the anti-inflammation mechanism.


Assuntos
Anti-Inflamatórios/farmacologia , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Piperidonas/farmacologia , Agregação Patológica de Proteínas/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Pirróis/farmacologia , Peptídeos beta-Amiloides/toxicidade , Animais , Anti-Inflamatórios/uso terapêutico , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Cerebelo/efeitos dos fármacos , Cerebelo/metabolismo , Quinase 9 Dependente de Ciclina/antagonistas & inibidores , Quinase 9 Dependente de Ciclina/metabolismo , Proteínas de Ligação a DNA/metabolismo , Hipocampo/citologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Fármacos Neuroprotetores/uso terapêutico , Piperidonas/uso terapêutico , Agregação Patológica de Proteínas/metabolismo , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Pirróis/uso terapêutico
3.
PLoS One ; 13(8): e0202667, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30114253

RESUMO

Both human parvovirus B19 (B19V) and human bocavirus (HBoV) are known to be important human pathogens of the Parvoviridae family. Our earlier investigation demonstrated that both B19V-VP1u and HBoV-VP1u have a significantly disruptive effect on tight junctions (TJs) in A549 cells, implying the essential role of parvovirus in airway infection and lung injury. However, no direct evidence that B19V-VP1u and HBoV-VP1u induce lung injury exists. The present study further investigates the induction of lung injury by B19V-VP1u and HBoV-VP1u in naïve Balb/c mice following subcutaneous injection of PBS, recombinant B19V-VP1u or HBoV-VP1u. The experimental results reveal significantly increased activity, protein expression and ratio of matrix metalloproteinase-9 (MMP-9) to MMP-2 in Balb/c mice that received B19V-VP1u or HBoV-VP1u compared to those that received PBS. Significantly higher levels of inflammatory cytokines, including IL-6 and IL-1ß, and greater lymphocyte infiltration in lung tissue sections were detected in mice that received B19V-VP1u or HBoV-VP1u. Additionally, significantly increased levels of phosphorylated p65 (NF-κB) and MAPK signaling proteins were observed in lung tissue of mice that received B19V-VP1u or HBoV-VP1u compared to those of mice that received PBS. These findings demonstrate for the first time that B19V-VP1u and HBoV-VP1u proteins induce lung inflammatory reactions through p65 (NF-κB) and MAPK signaling.


Assuntos
Bocavirus Humano/metabolismo , Lesão Pulmonar/patologia , Parvovirus B19 Humano/metabolismo , Proteínas Virais/metabolismo , Animais , Feminino , Humanos , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/patologia , Lesão Pulmonar/veterinária , Lesão Pulmonar/virologia , Linfócitos/citologia , Linfócitos/imunologia , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosforilação , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Junções Íntimas/metabolismo , Fator de Transcrição RelA/metabolismo , Proteínas Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA