Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 415, 2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36697407

RESUMO

The resemblance between electrons and optical waves has strongly driven the advancement of mesoscopic physics, evidenced by the widespread use of terms such as fermion or electron optics. However, electron waves have yet to be understood in open cavity structures which have provided contemporary optics with rich insight towards non-Hermitian systems and complex interactions between resonance modes. Here, we report the realization of an open cavity resonator in a two-dimensional electronic system. We studied the resonant electron modes within the cavity and resolved the signatures of longitudinal and transverse quantization, showing that the modes are robust despite the cavity being highly coupled to the open background continuum. The transverse modes were investigated by applying a controlled deformation to the cavity, and their spatial distributions were further analyzed using magnetoconductance measurements and numerical simulation. These results lay the groundwork to exploring matter waves in the context of modern optical frameworks.

2.
Small ; 18(29): e2202153, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35754305

RESUMO

Development of a reliable doping method for 2D materials is a key issue to adopt the materials in the future microelectronic circuits and to replace the silicon, keeping the Moore's law toward the sub-10 nm channel length. Especially hole doping is highly required, because most of the transition metal dichalcogenides (TMDC) among the 2D materials are electron-doped by sulfur vacancies in their atomic structures. Here, hole doping of a TMDC, tungsten disulfide (WS2 ) using the silicon substrate as the dopant medium is demonstrated. An ultralow-power current sourcing transistor or a gated WS2 pn diode is fabricated based on a charge plasma pn heterojunction formed between the WS2 thin-film and heavily doped bulk silicon. An ultralow switchable output current down to 0.01 nA µm-1 , an off-state current of ≈1 × 10-14 A µm-1 , a static power consumption range of 1 fW µm-1 -1 pW µm-1 , and an output current ratio of 103 at 0.1 V supply voltage are achieved. The charge plasma heterojunction allows a stable (less than 3% variation) output current regardless of the gate voltage once it is turned on.

3.
Bioresour Technol ; 300: 122546, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31918295

RESUMO

To improve stability of nitrogen removal in partial nitritation (PN)-anammox process, flat-type cryogel films using poly (vinylalcohol) named as FT-CPVAF were applied in continuous reactors. Stable PN operation was maintained with short acclimation of 8 days and ammonium oxidation rate of 1.68 ± 0.12 kg N m-3 d-1 comparatively higher than previous studies. The nitrogen removal, initially inhibited by an oxygen shock, was immediately reactivated with short lag-period by immobilization of anammox bacteria in FT-CPVAF. A novel two-stage PN-anammox process was operated in a continuous flow using FT-CPVAF for treatment of ammonium-rich synthetic wastewater (influent 315 mg NH4+-N L-1) showing 89.6 ± 0.76% of nitrogen removal at short hydraulic retention time (7.7 h). The use of FT-CPVAF enhanced selective enrichment of AOB and anammox bacter ia confirmed by high-throughput sequencing of i.e., relative abundances of Nitrosomonas europaea C-31 (37.14% in PN reactor) and 'Candidatus Jettenia caeni' (34.36% in anammox reactor).


Assuntos
Compostos de Amônio , Criogéis , Bactérias , Reatores Biológicos , Nitrogênio , Oxirredução , Águas Residuárias
4.
Chemosphere ; 205: 88-97, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29684695

RESUMO

In this study, anammox enrichment reactors were operated using flat type poly (vinyl alcohol) cryogel (cryoPVAG) with precultured anammox bacteria (PAB) and activated sludge (AS) from an anoxic tack of the A2O process to evaluate the effect of different seeding sources on anammox enrichment. In addition, cryoPVAGs with different thicknesses (1, 2, and 3 mm) were used to investigate the effects of the thickness on anammox enrichment. The regression analysis with a modified Gompertz model showed that the start-up period of the anammox enrichment using PAB inoculum was approximately 14 days earlier than that of AS inoculum at a nitrogen loading rate of approximately 1 kg-N m-3 day-1. Substrate diffusion was limited in 3-mm cryoPVAG with respect to trend in nitrogen removal rate. Quantitative PCR analysis indicated that in the initial phase, the 16S rRNA gene copy numbers of anammox microorganism in cryoPVAG were significantly different according to the seeding source, but finally converged to a similar level after anammox enrichment. The anammox reaction was initially promoted by cryoPVAG. Next, anammox biomass detached from cryoPVAG and enriched in the bulk phase to maximize NRR. Illumina MiSeq sequencing revealed that Candidatus Brocadia sinica led to the active anammox reaction, and its relative abundance decreased with increasing gel thickness.


Assuntos
Amônia/metabolismo , Bactérias/crescimento & desenvolvimento , Reatores Biológicos/microbiologia , Criogéis/química , Álcool de Polivinil/química , Esgotos/microbiologia , Anaerobiose , Bactérias/genética , Nitrogênio/metabolismo , Oxirredução , RNA Ribossômico 16S/análise , RNA Ribossômico 16S/genética
5.
Artigo em Inglês | MEDLINE | ID: mdl-29469652

RESUMO

In this study, the effects of the ammonium loading rate (ALR) and inorganic carbon loading rate (ILR) on the nitrification performance and composition of a nitrifying bacterial community were investigated in a moving bed biofilm reactor, using poly(vinyl alcohol) (PVA) sponge cubes as a supporting carrier. Between the two ALRs of 0.36 and 2.16 kg-N m-1 d-1, stable partial nitritation was achieved at the higher ALR. Inorganic carbon was dosed at high levels: 33.1, 22.0, 16.4, 11.0, and 5.4 times the theoretical amount. Nonetheless, nitrification efficiency was not affected by the ILR at the two ALRs. Quantitative PCR analysis of ammonia- and nitrite-oxidizing bacteria revealed that ALR is an important determinant of partial nitritation by accumulating ammonia-oxidizing bacteria in the nitrification system. In comparison, two nitrite-oxidizing bacterial genera (Nitrobacter and Nitrospira) showed almost the same relative abundance at various ALRs and ILRs. Terminal restriction fragment length polymorphism targeting the gene of ammonia monooxygenase subunit A revealed that Nitrosomonas europaea dominated under all conditions.


Assuntos
Compostos de Amônio/farmacocinética , Técnicas de Cultura Celular por Lotes/métodos , Reatores Biológicos , Carbono/metabolismo , Nitrificação , Nitritos/metabolismo , Amônia/farmacocinética , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Biofilmes , Reatores Biológicos/microbiologia , Nitrobacter/metabolismo , Oxirredução , Oxirredutases/metabolismo , Polimorfismo de Fragmento de Restrição , Reação em Cadeia da Polimerase em Tempo Real
6.
Artigo em Inglês | MEDLINE | ID: mdl-25560266

RESUMO

In this work, nitrification and changes in the composition of the total bacterial community under inorganic carbon (IC)-limited conditions, in a nitrifying moving bed biofilm reactor, was investigated. A culture-independent analysis of cloning and sequencing based on the 16S rRNA gene was applied to quantify the bacterial diversity and to determine bacterial taxonomic assignment. IC concentrations had significant effects on the stability of ammonia-oxidation as indicated by the reduction of the nitrogen conversion rate with high NH4(+)-N loadings. The predominance of Nitrosomonas europaea was maintained in spite of changes in the IC concentration. In contrast, heterotrophic bacterial species contributed to a high bacterial diversity, and to a dynamic shift in the bacterial community structure, under IC-limited conditions. In this study, individual functions of heterotrophic bacteria were estimated based on taxonomic information. Possible key roles of coexisting heterotrophic bacteria are the assimilation of organic compounds of extracellular polymeric substances produced by nitrifiers, and biofilm formation by providing a filamentous structure and aggregation properties.


Assuntos
Bactérias/metabolismo , Biofilmes , Biota , Compostos Inorgânicos de Carbono/metabolismo , Nitrificação , Nitrogênio/metabolismo , Esgotos/microbiologia , Processos Heterotróficos , Oxirredução , República da Coreia
7.
Nanotechnology ; 25(29): 295201, 2014 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-24981295

RESUMO

We demonstrate a simple but efficient design for forming tunable single, double and triple quantum dots (QDs) in a sub-µm-long carbon nanotube (CNT) with two major features that distinguish this design from that of traditional CNT QDs: the use of i) Al2Ox tunnelling barriers between the CNT and metal contacts and ii) local side gates for controlling both the height of the potential barrier and the electron-confining potential profile to define multiple QDs. In a serial triple QD, in particular, we find that a stable molecular coupling state exists between two distant outer QDs. This state manifests in anti-crossing charging lines that correspond to electron and hole triple points for the outer QDs. The observed results are also reproduced in calculations based on a capacitive interaction model with reasonable configurations of electrons in the QDs. Our design using artificial tunnel contacts and local side gates provides a simple means of creating multiple QDs in CNTs for future quantum-engineering applications.

8.
Bioprocess Biosyst Eng ; 37(6): 1115-25, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24297159

RESUMO

Poly(vinyl alcohol) (PVA) has been utilized as a support material for the immobilization of nitrifying bacteria without the comprehensive survey of partial nitritation. In the present study, the activities of nitrifiers and the maximum nitrogen conversion rate of partial nitritation with PVA sponge-cubes were specified according to different conditions. The selective enrichment of ammonia-oxidizing bacteria (AOB) on PVA sponge-cubes was achieved by the competition between AOB and nitrite-oxidizing bacteria for dissolved oxygen. The efficiency of ammonia oxidation was proportional to the concentration of HCO3 (-) with the molar ratio of HCO3 (-)-C/NH4 (+)-N = 1.91 and a half of the ratio was applied to the further experiments to ensure stable partial nitritation. The maximum nitrogen conversion rate of partial nitritation was dependent on the volume, not the size of sponge-cubes. The partial nitritation showed the superior rate performance of 3.09 kg N/m(3) day with the packing ratio of 32 % of 5 × 5 × 5 mm(3) PVA sponge-cubes.


Assuntos
Amônia/metabolismo , Bactérias/metabolismo , Nitrificação/fisiologia , Álcool de Polivinil/química , Oxirredução
9.
Rev Sci Instrum ; 83(8): 084704, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22938321

RESUMO

A wide-band current preamplifier based on a composite operational amplifier is proposed. It has been shown that the bandwidth of the preamplifier can be significantly increased by enhancing the effective open-loop gain. The described 10(7) V/A current gain preamplifier had the bandwidth of about 100 kHz with the 1 nF input shunt capacitance. The measured preamplifier current noise was 46 fA/√Hz at 1 kHz, close to the design noise minimum. The voltage noise was found to be about 2.9 nV/√Hz at 1 kHz, which is in a good agreement with the value expected for the particular operational amplifier used in the input stage. By analysing the total produced noise we found that the optimal frequency range suitable for the fast lock-in measurements is from 1 kHz to 2 kHz. To obtain the same signal-to-noise ratio, the reported preamplifier requires ~10% of the integration time needed in measurements made with a conventional preamplifier.

10.
Water Res ; 38(2): 347-54, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14675646

RESUMO

The modified zeo-SBR is recommended for a new nitrogen removal process that has a special function of consistent ammonium exchange and bioregeneration of zeolite-floc. Three sets of sequencing batch reactors, control, zeo-SBR, and modified zeo-SBR were tested to assess nitrogen removal efficiency. The control reactor consisted of anoxic-fill, aeration-mixing, settling, and decanting/idle phases, meaning that nitrogen removal efficiency was dependent on the decanting volume in a cycle. The zeo-SBR reactor was operated in the same way as the control reactor, except for daily addition of powdered zeolite in the SBR reactor. The operating order sequences in the zeo-SBR were changed in the modified zeo-SBR. Anoxic-fill phase was followed by aeration-mixing phase in the zeo-SBR, while aeration-mixing phase was followed by anoxic-fill phase in the modified zeo-SBR to carry NH4(+)-N over to the next operational cycle and to reduce total nitrogen concentration in the effluent. In the modified zeo-SBR, nitrification and biological regeneration occurred during the initial aeration-mixing phase, while denitrification and ammonium adsorption occurred in the following anoxic-fill phase. The changed operational sequence in the modified zeo-SBR to adapt the ammonium adsorption and biological regeneration of the zeolite-floc could enhance nitrogen removal efficiency. As a result of the continuous operation, the nitrogen removal efficiencies of the control and zeo-SBR were in 68.5-70.9%, based on the 33% of decanting volume for a cycle. The zeo-SBR showed a consistent ammonium exchange and bio-regeneration in the anoxic-fill and aeration-mixing phases, respectively. Meanwhile, the effluent total nitrogen of the modified zeo-SBR showed 50-60 mg N/L through ammonium adsorption of the zeolite-floc when the influent ammonium concentration was 315 mg N/L, indicating the T-N removal efficiency was enhanced over 10% in the same HRT and SRT conditions as those of control and zeo-SBR reactors. The ammonium adsorption capacity was found to be 6-7 mg NH4(+)-N/g FSS that is equivalent to 40 mg NH4(+)-N/L of ammonium nitrogen removal.


Assuntos
Amônia/química , Reatores Biológicos , Nitrogênio/isolamento & purificação , Eliminação de Resíduos Líquidos/métodos , Poluentes da Água/isolamento & purificação , Adsorção , Floculação , Zeolitas/química
11.
Artigo em Inglês | MEDLINE | ID: mdl-12680585

RESUMO

The removal of nitrogen and organics in a sequencing batch reactor (SBR) using hybrid media were investigated in this work. The hybrid media was made by the use of polyurethane foam (PU) cubes and powdered activated carbon (PAC). The function of activated carbon of hybrid media was to offer a suitable active site, which was able to absorb organic substances and ammonia, as well as that of PU was to provide an appropriated surface onto which biomass could be attached and grown. A laboratory-scale moving-bed sequencing batch reactor (SBR) was used for investigating the efficiency of hybrid media. The removal of nitrogen and organics for synthetic wastewater (COD; 490-1,627 mg/L, NH4(+)-N; 180-210 mg/L) were evaluated at different COD/N ratio and different anoxic phase conditions, respectively. The system was operated with the organic loading rate (OLR) of 0.1, 0.16, 0.24, and 0.28 kg COD/m3 day, respectively. Each mode based on OLR was divided as the periods of 45 days of operation time, except for third mode that was operated during 30 days. After acclimatization period, effluent total COD concentrations slightly decreased and the removal efficiency of organics increased to about 90% (COD; 70 mg/L) after 60 days and achieved 98% (COD; 30 mg/L) at the end of experiments. The organics reduction seemed to be less affected by shock loading since high organic loads did not affect the removal efficiency. The NIH4(+)-N concentrations in effluent showed almost lower than 1 mg/L and NO3(-)-N concentrations were high (150 mg/L) during a very low C/N ratio (C/N=2). Over 90% of T-N removal efficiency (T-N; 16 mg/L) was obtained during the last 20 days of the operation after controlling the COD/N ratio (C/N=7). The mixing condition and COD/N ratio at anoxic phase were determined as a main operating factors. In future, the optimal operating conditions of SBR system with hybrid media will be investigated from the view of maintaining a sufficient biomass to the hybrid media under the vigorous mixing conditions.


Assuntos
Reatores Biológicos , Nitrogênio/isolamento & purificação , Poluentes Químicos da Água/isolamento & purificação , Adsorção , Biomassa , Carbono/química , Meios de Cultura , Compostos Orgânicos/isolamento & purificação , Poliuretanos
12.
Nature ; 422(6930): 415-8, 2003 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-12660779

RESUMO

Double-slit electron interferometers fabricated in high mobility two-dimensional electron gases are powerful tools for studying coherent wave-like phenomena in mesoscopic systems. However, they suffer from low visibility of the interference patterns due to the many channels present in each slit, and from poor sensitivity to small currents due to their open geometry. Moreover, these interferometers do not function in high magnetic fields--such as those required to enter the quantum Hall effect regime--as the field destroys the symmetry between left and right slits. Here we report the fabrication and operation of a single-channel, two-path electron interferometer that functions in a high magnetic field. This device is the first electronic analogue of the optical Mach-Zehnder interferometer, and opens the way to measuring interference of quasiparticles with fractional charges. On the basis of measurements of single edge state and closed geometry transport in the quantum Hall effect regime, we find that the interferometer is highly sensitive and exhibits very high visibility (62%). However, the interference pattern decays precipitously with increasing electron temperature or energy. Although the origin of this dephasing is unclear, we show, via shot-noise measurements, that it is not a decoherence process that results from inelastic scattering events.

13.
Water Res ; 36(11): 2695-702, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12146856

RESUMO

In order to elucidate the biologically driven pH fluctuation phenomena in industrial wastewater treatment, the contrary effects of acetic acid (AA) and epichlorohydrin (ECH) on the pH of aeration tank were investigated. Two simple equations were derived to estimate optimum neutralization pHs for the biological AA/ECH wastewater treatment, and the calculated optimum neutralization pHs were compared with experimental results. The pH in aeration tank was expected to fluctuate sharply with the smallest deviation of neutralization pH from the optimum value. However experimental results showed that real pH fluctuation is smaller than the theoretical one. It was considered that carbonate buffer in aqueous system relieves the pH fluctuation. The deviation between experimental and theoretical optimum neutralization pH could be mainly caused by volatility of AA and ECH. The deviation was larger with ECH wastewater of which volatility is larger than AA. Finally, this theory was successfully applied to the real petrochemical wastewater treatment. The pH of aeration tank was properly maintained when acidified wastewater (pH 3.4) was supplied.


Assuntos
Ácido Acético/metabolismo , Epicloroidrina/metabolismo , Resíduos Industriais , Solventes/metabolismo , Eliminação de Resíduos Líquidos/métodos , Ácido Acético/química , Biodegradação Ambiental , Epicloroidrina/química , Concentração de Íons de Hidrogênio , Solventes/química , Volatilização
14.
Artigo em Inglês | MEDLINE | ID: mdl-11846277

RESUMO

Most landfill leachates in Korea, herein defined as the contaminated liquid resulting from the percolation of water through a landfill, are high in ammonium nitrogen, which inhibits biological treatment processes and deteriorates rivers. A laboratory experiment investigated the effect of pre-removal of ammonium nitrogen using zeolite on the efficiency of organic treatment of the following activated-sludge process. Ferric chloride was initially used as a coagulant for solids removal. A clinoptilolite and mordenite rich rock from the Guryongpo area, the Yeongil Basalt, in Korea, reduced the ammonia nitrogen concentrations of leachate from 1300-1500 to 110-130 mg/l in a 24h batch operation. Three activated sludge reactors were operated to compare treatment efficiency under different influent conditions. In reactor 1, leachate having high concentration of chemical oxygen demands (COD) and suspended solids (SS) was directly fed to the reactor without pretreatment. The supernatant, after the coagulation process that remove some suspended solids and COD, was fed to reactor 2. As the use of coagulation process alone is not effective to remove ammonium nitrogen, supernatant treated by both coagulation focusing on the removal of COD and the zeolite concentrating on the removal of ammonium nitrogen was fed to reactor 3. As the result of experiment, greater efficiency in lowering the chemical oxygen demand (83%, influent COD; 1800-3000 mg/l, effluent COD; 300-500 mg/l) was achieved in reactor 3. Meanwhile, 63% (influent COD; 4000-5000 mg/l, effluent COD; 1470-1840 mg/l) and 66% (influent COD; 2400-3300 mg/l, effluent COD; 820-1100 mg/l) removal efficiency of COD were achieved in reactors 1 and 2, respectively. Thus, ammonia pre-removal by zeolite remarkably improved the lowering of chemical oxygen demand and the solids separation in the activated sludge process.


Assuntos
Amônia/química , Eliminação de Resíduos/métodos , Poluentes do Solo , Poluentes da Água , Biodegradação Ambiental , Poluição Ambiental/prevenção & controle , Oxigênio/metabolismo , Zeolitas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA