Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Exp Brain Res ; 241(5): 1289-1298, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37000202

RESUMO

Parkinson disease (PD) is a chronic neurodegenerative disorder characterized by a progressive loss of dopamine neurons in the substantia nigra pars compacta (SNpc). In the last years, a growing interest to study the relationship between metabolic dysfunction and neurodegenerative disease like PD has emerged. This study aimed to evaluate the occurrence of possible changes in metabolic homeostasis due to intranigral rotenone administration, a neurotoxin that damages dopaminergic neurons leading to motor impairments mimicking those that happen in PD. Male Wistar rats were distributed into two groups: sham (n = 10) or rotenone (n = 10). Sham group received, bilaterally, within the SNpc, 1 µL of vehicle dimethyl-sulfoxide (DMSO) and the experimental group was bilaterally injected with 1 µL of rotenone (12 µg/µL). Twenty-four hours after the stereotaxic surgeries, the animals underwent the open field test followed by subsequent peripheral blood and cerebrospinal fluid (CSF) samples collection for biochemical testing. The results showed that rotenone was able to replicate the typical motor behavior impairment seen in the disease, i.e., decrease in locomotion (P = 0.05) and increase in immobility (P = 0.01) with a strong correlation (r = - 0.85; P < 0.0001) between them. In addition, it was demonstrated that this model is able to decrease plasmatic total-cholesterol (P = 0.04) and HDL-cholesterol (P = 0.007) potentially impacting peripheral metabolism. Hence, it was revealed a potential ability to reproduce relevant metabolic dysfunctions like hyperglycemia which could be explained by acute and systemic mitochondrial rotenone toxicity and SNpc nigral toxicity. Such mechanisms may still be responsible for the potential occurrence of CSF-hyperglycemia (d = 0.7). Since intranigral rotenone is an early phase model of PD, the present results open a new road for studies aiming to investigate metabolic changes in PD.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Ratos , Animais , Masculino , Doença de Parkinson/metabolismo , Rotenona/toxicidade , Rotenona/metabolismo , Ratos Wistar , Doenças Neurodegenerativas/metabolismo , Neurônios Dopaminérgicos/metabolismo , Colesterol/metabolismo , Modelos Animais de Doenças
2.
Behav Pharmacol ; 30(8): 676-688, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31703030

RESUMO

Parkinson's disease (PD) is a neurodegenerative disorder classically associated with motor symptoms, but several nonmotor disturbances appear decades before the clinical diagnosis of the disease. A variety of hypotheses exist to explain the onset of PD, and neuroinflammation is one of the most investigated processes. In fact, strong evidence suggests that PD begins with an inflammatory process; currently, however, no anti-inflammatory therapy is clinically employed to alleviate the typical motor and the prodromal disturbances such as olfactory loss, cognitive impairments, depression and anxiety, sleep disturbances, and autonomic disorders. In fact, the classical dopaminergic therapies are not effective in alleviating these symptoms and there is no other specific therapy for these outcomes. Therefore, in this review, we will discuss novel potential pharmacological therapeutic strategies focusing on cannabinoids, caffeine, melatonin, and dietary compounds, which could act as adjuvants to regular PD therapy. These described chemicals have been extensively investigated as anti-inflammatory agents possibly promoting beneficial effects on nonmotor symptoms of PD. The investigation of the inflammatory process at different stages of PD progression should give us a better view of the therapeutic scenario and could improve our understanding of the mechanisms of this disease.


Assuntos
Neuroimunomodulação/fisiologia , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/imunologia , Animais , Anti-Inflamatórios/uso terapêutico , Cafeína/uso terapêutico , Canabinoides/uso terapêutico , Suplementos Nutricionais , Humanos , Melatonina/uso terapêutico , Neuroimunomodulação/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA