Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cancer Res Commun ; 3(7): 1286-1311, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37476073

RESUMO

Prostate cancer is the second leading cause of noncutaneous cancer-related deaths in American men. Androgen deprivation therapy (ADT), radical prostatectomy, and radiotherapy remain the primary treatment for patients with early-stage prostate cancer (castration-sensitive prostate cancer). Following ADT, many patients ultimately develop metastatic castration-resistant prostate cancer (mCRPC). Standard chemotherapy options for CRPC are docetaxel (DTX) and cabazitaxel, which increase median survival, although the development of resistance is common. Cancer stem-like cells possess mesenchymal phenotypes [epithelial-to-mesenchymal transition (EMT)] and play crucial roles in tumor initiation and progression of mCRPC. We have shown that low-dose continuous administration of topotecan (METRO-TOPO) inhibits prostate cancer growth by interfering with key cancer pathway genes. This study utilized bulk and single-cell or whole-transcriptome analysis [(RNA sequencing (RNA-seq) and single-cell RNA sequencing (scRNA-seq)], and we observed greater expression of several EMT markers, including Vimentin, hyaluronan synthase-3, S100 calcium binding protein A6, TGFB1, CD44, CD55, and CD109 in European American and African American aggressive variant prostate cancer (AVPC) subtypes-mCRPC, neuroendocrine variant (NEPC), and taxane-resistant. The taxane-resistant gene FSCN1 was also expressed highly in single-cell subclonal populations in mCRPC. Furthermore, metronomic-topotecan single agent and combinations with DTX downregulated these EMT markers as well as CD44+ and CD44+/CD133+ "stem-like" cell populations. A microfluidic chip-based cell invasion assay revealed that METRO-TOPO treatment as a single agent or in combination with DTX was potentially effective against invasive prostate cancer spread. Our RNA-seq and scRNA-seq analysis were supported by in silico and in vitro studies, suggesting METRO-TOPO combined with DTX may inhibit oncogenic progression by reducing cancer stemness in AVPC through the inhibition of EMT markers and multiple oncogenic factors/pathways. Significance: The utilization of metronomic-like dosing regimens of topotecan alone and in combination with DTX resulted in the suppression of makers associated with EMT and stem-like cell populations in AVPC models. The identification of molecular signatures and their potential to serve as novel biomarkers for monitoring treatment efficacy and disease progression response to treatment efficacy and disease progression were achieved using bulk RNA-seq and single-cell-omics methodologies.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Topotecan , Masculino , Humanos , Docetaxel/farmacologia , Topotecan/farmacologia , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Administração Metronômica , Antagonistas de Androgênios/farmacologia , Transição Epitelial-Mesenquimal , Taxoides , Progressão da Doença , Proteínas de Transporte/farmacologia , Proteínas dos Microfilamentos/farmacologia
2.
J Vet Sci ; 20(5): e48, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31565891

RESUMO

Breast cancer is among the most common malignancies affecting women and reproductively intact female dogs, resulting in death from metastatic disease if not treated effectively. To better manage the disease progression, canine mammary tumor (CMT) cells derived from malignant canine mammary cancers were fused to autologous dendritic cells (DCs) to produce living hybrid-cell fusion vaccines for canine patients diagnosed with spontaneous mammary carcinoma. The high-speed sorting of rare autologous canine patient DCs from the peripheral blood provides the autologous component of fusion vaccines, and fusion to major histocompatibility complex-unmatched CMT cells were produced at high rates. The vaccinations were delivered to each patient following a surgical resection 3 times at 3-week intervals in combination with immuno-stimulatory oligonucleotides and Gemcitabine adjunct therapy. The immunized patient animals survived 3.3-times longer (median survival 611 days) than the control patients (median survival 184 days) and also appeared to exhibit an enhanced quality of life. A comparison of vaccinated patients diagnosed with inflammatory mammary carcinoma resulted in a very short median survival (42 days), suggesting no effect of vaccination. The data showed that the development of autologous living DC-based vaccine strategies in patient animals designed to improve the management of canine mammary carcinoma can be successful and may allow an identification of the antigens that can be translatable to promote effective immunity in canine and human patients.


Assuntos
Vacinas Anticâncer/administração & dosagem , Carcinoma/veterinária , Células Dendríticas/fisiologia , Neoplasias Mamárias Animais/prevenção & controle , Animais , Carcinoma/prevenção & controle , Fusão Celular , Linhagem Celular Tumoral , Modelos Animais de Doenças , Cães , Feminino
3.
Cancer Immunol Immunother ; 60(1): 87-97, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21069323

RESUMO

Mammary cancer is among the most prevalent canine tumors and frequently resulting in death due to metastatic disease that is highly homologous to human breast cancer. Most canine tumors fail to raise effective immune reactions yet, some spontaneous remissions do occur. Hybrid canine dendritic cell-tumor cell fusion vaccines were designed to enhance antigen presentation and tumor immune recognition. Peripheral blood-derived autologous dendritic cell enriched populations were isolated from dogs based on CD11c(+) expression and fused with canine mammary tumor (CMT) cells for vaccination of laboratory Beagles. These hybrid cells were injected into popliteal lymph nodes of normal dogs, guided by ultrasound, and included CpG-oligonucleotide adjuvants. Three rounds of vaccination were delivered. Significant IgG responses were observed in all vaccinated dogs compared to vehicle-injected controls. Canine IgG antibodies recognized shared CMT antigens as was demonstrated by IgG-recognition of three unrelated/independently derived CMT cell lines, and recognition of freshly isolated, unrelated, primary biopsy-derived CMT cells. A bias toward an IgG2 isotype response was observed after two vaccinations in most dogs. Neither significant cytotoxic T cell responses were detected, nor adverse or side-effects due to vaccination or due to the induced immune responses noted. These data provide proof-of-principle for this cancer vaccine strategy and demonstrate the presence of shared CMT antigens that promote immune recognition of mammary cancer.


Assuntos
Vacinas Anticâncer , Quimera/metabolismo , Células Dendríticas/metabolismo , Neoplasias Mamárias Animais/imunologia , Neoplasias Mamárias Animais/terapia , Animais , Anticorpos Antineoplásicos/sangue , Apresentação de Antígeno , Antígenos de Neoplasias/imunologia , Fusão Celular/métodos , Linhagem Celular Tumoral , Separação Celular , Quimera/imunologia , Células Dendríticas/imunologia , Células Dendríticas/patologia , Cães , Feminino , Citometria de Fluxo , Imunização Secundária , Imunoglobulina G/sangue , Ativação Linfocitária , Neoplasias Mamárias Animais/sangue , Neoplasias Mamárias Animais/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA