Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
STAR Protoc ; 5(1): 102835, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38224493

RESUMO

Creating in vitro culture platforms for monkey embryos is crucial for understanding the initial 4 weeks of early primate embryogenesis. Here, we present a protocol to culture cynomolgus monkey embryos in vitro for 25 days post-fertilization and to delineate the key developmental events of gastrulation and early organogenesis. We describe steps for culturing with a 3D system, immunofluorescence analysis, single-cell RNA sequencing, and bioinformatic analysis. For complete details on the use and execution of this protocol, please refer to Gong et al. (2023).1.


Assuntos
Organogênese , Análise da Expressão Gênica de Célula Única , Animais , Macaca fascicularis , Organogênese/genética , Desenvolvimento Embrionário/genética , Biologia Computacional
2.
Cell ; 186(26): 5859-5875.e24, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-38052213

RESUMO

Embryogenesis necessitates harmonious coordination between embryonic and extraembryonic tissues. Although stem cells of both embryonic and extraembryonic origins have been generated, they are grown in different culture conditions. In this study, utilizing a unified culture condition that activates the FGF, TGF-ß, and WNT pathways, we have successfully derived embryonic stem cells (FTW-ESCs), extraembryonic endoderm stem cells (FTW-XENs), and trophoblast stem cells (FTW-TSCs) from the three foundational tissues of mouse and cynomolgus monkey (Macaca fascicularis) blastocysts. This approach facilitates the co-culture of embryonic and extraembryonic stem cells, revealing a growth inhibition effect exerted by extraembryonic endoderm cells on pluripotent cells, partially through extracellular matrix signaling. Additionally, our cross-species analysis identified both shared and unique transcription factors and pathways regulating FTW-XENs. The embryonic and extraembryonic stem cell co-culture strategy offers promising avenues for developing more faithful embryo models and devising more developmentally pertinent differentiation protocols.


Assuntos
Embrião de Mamíferos , Células-Tronco Embrionárias , Animais , Técnicas de Cocultura , Macaca fascicularis , Células-Tronco Embrionárias/metabolismo , Diferenciação Celular , Endoderma/metabolismo , Linhagem da Célula
3.
Cell ; 186(10): 2092-2110.e23, 2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-37172563

RESUMO

The third and fourth weeks of gestation in primates are marked by several developmental milestones, including gastrulation and the formation of organ primordia. However, our understanding of this period is limited due to restricted access to in vivo embryos. To address this gap, we developed an embedded 3D culture system that allows for the extended ex utero culture of cynomolgus monkey embryos for up to 25 days post-fertilization. Morphological, histological, and single-cell RNA-sequencing analyses demonstrate that ex utero cultured monkey embryos largely recapitulated key events of in vivo development. With this platform, we were able to delineate lineage trajectories and genetic programs involved in neural induction, lateral plate mesoderm differentiation, yolk sac hematopoiesis, primitive gut, and primordial germ-cell-like cell development in monkeys. Our embedded 3D culture system provides a robust and reproducible platform for growing monkey embryos from blastocysts to early organogenesis and studying primate embryogenesis ex utero.


Assuntos
Embrião de Mamíferos , Desenvolvimento Embrionário , Animais , Macaca fascicularis , Blastocisto , Organogênese , Primatas
4.
Curr Res Food Sci ; 6: 100484, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37033741

RESUMO

Foodborne pathogens and their biofilms pose a risk to human health through food chain. However, the bacteriocin resources combating this threat are still limited. Here, Lacticaseibacillus rhamnosus, one of the most used probiotics in food industry, was prepared on a large scale using alternating tangential flow (ATF) perfusion-based technology. Compared to the conventional fed-batch approach, ATF perfusion remarkably increased the viable cells of L. rhamnosus CLK 101 to 11.93 ± 0.14 log CFU/mL. Based on obtained viable cells, we purified and characterized a novel bacteriocin CLK_01 with a broad spectrum of activity against both Gram-positive and Gram-negative foodborne pathogens. LC-MS/MS analysis revealed that CLK_01 has a molecular mass of 701.49 Da and a hydrophobic amino acid composition of I-K-K-V-T-I. As a novel bacteriocin, CLK_01 showed high thermal stability and acid-base tolerance over 25-121 °C and pH 2-10. It significantly reduced cell viability of bacterial pathogens (p < 0.001), and strongly inhibited their biofilm formation. Scanning electron microscopy demonstrated deformation of pathogenic cells caused by CLK_01, leading to cytoplasmic content leakage and bacterial death. Summarily, we employed ATF perfusion to obtain viable L. rhamnosus, and presented that bacteriocin CLK_01 could serve as a promising biopreservative for controlling foodborne pathogenic bacteria and their biofilms.

5.
bioRxiv ; 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36945498

RESUMO

Faithful embryogenesis requires precise coordination between embryonic and extraembryonic tissues. Although stem cells from embryonic and extraembryonic origins have been generated for several mammalian species(Bogliotti et al., 2018; Choi et al., 2019; Cui et al., 2019; Evans and Kaufman, 1981; Kunath et al., 2005; Li et al., 2008; Martin, 1981; Okae et al., 2018; Tanaka et al., 1998; Thomson et al., 1998; Vandevoort et al., 2007; Vilarino et al., 2020; Yu et al., 2021b; Zhong et al., 2018), they are grown in different culture conditions with diverse media composition, which makes it difficult to study cross-lineage communication. Here, by using the same culture condition that activates FGF, TGF-ß and WNT signaling pathways, we derived stable embryonic stem cells (ESCs), extraembryonic endoderm stem cells (XENs) and trophoblast stem cells (TSCs) from all three founding tissues of mouse and cynomolgus monkey blastocysts. This allowed us to establish embryonic and extraembryonic stem cell co-cultures to dissect lineage crosstalk during early mammalian development. Co-cultures of ESCs and XENs uncovered a conserved and previously unrecognized growth inhibition of pluripotent cells by extraembryonic endoderm cells, which is in part mediated through extracellular matrix signaling. Our study unveils a more universal state of stem cell self-renewal stabilized by activation, as opposed to inhibition, of developmental signaling pathways. The embryonic and extraembryonic stem cell co-culture strategy developed here will open new avenues for creating more faithful embryo models and developing more developmentally relevant differentiation protocols.

6.
Gigascience ; 122022 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-37226912

RESUMO

BACKGROUND: Early post-implantation development, especially gastrulation in primates, is accompanied by extensive drastic chromatin reorganization, which remains largely elusive. RESULTS: To delineate the global chromatin landscape and understand the molecular dynamics during this period, a single-cell assay for transposase accessible chromatin sequencing (scATAC-seq) was applied to in vitro cultured cynomolgus monkey (Macaca fascicularis, hereafter referred to as monkey) embryos to investigate the chromatin status. First, we delineated the cis-regulatory interactions and identified the regulatory networks and critical transcription factors involved in the epiblast (EPI), hypoblast, and trophectoderm/trophoblast (TE) lineage specification. Second, we observed that the chromatin opening of some genome regions preceded the gene expression during EPI and trophoblast specification. Third, we identified the opposing roles of FGF and BMP signaling in pluripotency regulation during EPI specification. Finally, we revealed the similarity between EPI and TE in gene expression profiles and demonstrated that PATZ1 and NR2F2 were involved in EPI and trophoblast specification during monkey post-implantation development. CONCLUSIONS: Our findings provide a useful resource and insights into dissecting the transcriptional regulatory machinery during primate post-implantation development.


Assuntos
Cromatina , Fatores de Transcrição , Animais , Cromatina/genética , Macaca fascicularis , Transposases
7.
Gene Expr Patterns ; 43: 119230, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34915195

RESUMO

The embryonic stem cell- (ESC) specific transcription factor Oct4 is a well-known master regulator of pluripotency. The aim of this study was to identify upstream regulators of Oct4 and explore their functional link in regulating lincRNA expression in ESCs. By quantitative real-time PCR (RT-qPCR) analysis upon CCCTC-binding factor (CTCF) or Oct4 knockdown, here, we found that the chromatin insulator CTCF transcriptionally controls Oct4 gene expression in mouse ES cells. Furthermore, co-immunoprecipitation assays showed that CTCF physically interacts with Oct4. By analyzing CTCF and Oct4 ChIP-seq datasets in mouse ES cells and investigating their genomic occupancies, we demonstrated that CTCF and Oct4 share overlapping regulatory functions and are required for active transcription of long intergenic non-coding RNAs (lincRNAs) linc1253 and linc1356, which were reported to repress cellular lineage programs and maintain a pluripotent state. In summary, we propose an integrated model of transcriptional control mediated by CTCF, the master weaver of the genome, for the upstream regulation of Oct4-and ESC-associated genes. These results connect the chromatin insulator CTCF and the pluripotency factor Oct4 in the regulation of lincRNAs in pluripotent cells.


Assuntos
Fator de Ligação a CCCTC/metabolismo , RNA Longo não Codificante , Animais , Fator de Ligação a CCCTC/genética , Cromatina/genética , Cromatina/metabolismo , Células-Tronco Embrionárias/metabolismo , Camundongos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
8.
Viruses ; 12(2)2020 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-32050494

RESUMO

New strategies against antibiotic-resistant bacterial pathogens are urgently needed but are not within reach. Here, we present in vitro and in vivo antimicrobial activity of TSPphg, a novel phage lysin identified from extremophilic Thermus phage TSP4 by sequencing its whole genome. By breaking down the bacterial cells, TSPphg is able to cause bacteria destruction and has shown bactericidal activity against both Gram-negative and Gram-positive pathogenic bacteria, especially antibiotic-resistant strains of Klebsiella pneumoniae, in which the complete elimination and highest reduction in bacterial counts by greater than 6 logs were observed upon 50 µg/mL TSPphg treatment at 37 °C for 1 h. A murine skin infection model further confirmed the in vivo efficacy of TSPphg in removing a highly dangerous and multidrug-resistant Staphylococcus aureus from skin damage and in accelerating wound closure. Together, our findings may offer a therapeutic alternative to help fight bacterial infections in the current age of mounting antibiotic resistance, and to shed light on bacteriophage-based strategies to develop novel anti-infectives.


Assuntos
Anti-Infecciosos/farmacologia , Endopeptidases/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Infecções Estafilocócicas/tratamento farmacológico , Proteínas Virais/farmacologia , Animais , Bacteriófagos/enzimologia , Bacteriófagos/genética , Feminino , Genoma Viral , Bactérias Gram-Negativas/patogenicidade , Bactérias Gram-Positivas/patogenicidade , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Camundongos , Pele/efeitos dos fármacos , Pele/microbiologia , Pele/patologia , Thermus/virologia , Infecção dos Ferimentos/tratamento farmacológico , Infecção dos Ferimentos/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA