Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biomed Signal Process Control ; 75: 103609, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35287368

RESUMO

Remote photoplethysmography (rPPG), which aims at measuring heart activities without any contact, has great potential in many applications. The emergence of novel coronavirus pneumonia COVID-19 has attracted worldwide attentions. Contact photoplethysmography (cPPG) methods need to contact the detection equipment with the patient, which may accelerate the spread of the epidemic. In the future, the non-contact heart rate detection will be an urgent need. However, existing heart rate measuring methods from facial videos are vulnerable to the less-constrained scenarios (e.g., with head movement and wearing a mask). In this paper, we proposed a method of heart rate detection based on eye location of region of interest (ROI) to solve the problem of missing information when wearing masks. Besides, a model to filter outliers based on residual network was conceived first by us and the better heart rate measurement accuracy was generated. To validate our method, we also created a mask dataset. The results demonstrated that after using our method for correcting the heart rate (HR) value measured with the traditional method, the accuracy reaches 4.65 bpm, which is 0.42 bpm higher than that without correction.

2.
Sensors (Basel) ; 20(24)2020 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-33302477

RESUMO

Research shows that physiological signals can provide objective data support for the analysis of human emotions. At present, non-contact heart rate data have been employed in the research of medicine, intelligent transportation, smart education, etc. However, it is hard to detect heart rate data using non-contact traditional methods during head rotation, especially when face information is missing in scenarios such as online teaching/learning. Traditional remote photoplethysmography (rPPG) methods require a static, full frontal face within a fixed distance for heart rate detection. These strict requirements make it impractical to measure heart rate data in real-world scenarios, as a lot of videos only partially record the subjects' face information, such as profile, too small distance, and wearing a mask. The current algorithm aims to solve the problem of head deflections between 30 degrees and 45 degrees by employing a symmetry substitution method, which can replace the undetected region of interest (ROI) with the detectable one. When face information is partially missing, our algorithm uses face-eye location to determine ROI. The results show that the method in this paper can solve certain practical problems related to heart rate detection, with a root mean square error (RMSE) under 7.64 bpm.


Assuntos
Educação a Distância , Frequência Cardíaca , Algoritmos , Face , Humanos , Fotopletismografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA