Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(22)2023 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-38003398

RESUMO

Dysregulated metal homeostasis is associated with many pathological conditions, including arthritic diseases. Osteoarthritis and rheumatoid arthritis are the two most prevalent disorders that damage the joints and lead to cartilage and bone destruction. Recent studies show that the levels of zinc (Zn) and copper (Cu) are generally altered in the serum of arthritis patients. Therefore, metal dyshomeostasis may reflect the contribution of these trace elements to the disease's pathogenesis and manifestations, suggesting their potential for prognosis and treatment. Carnosine (Car) also emerged as a biomarker in arthritis and exerts protective and osteogenic effects in arthritic joints. Notably, its zinc(II) complex, polaprezinc, has been recently proposed as a drug-repurposing candidate for bone fracture healing. On these bases, this review article aims to provide an overview of the beneficial roles of Cu and Zn in bone and cartilage health and their potential application in tissue engineering. The effects of Car and polaprezinc in promoting cartilage and bone regeneration are also discussed. We hypothesize that polaprezinc could exchange Zn for Cu, present in the culture media, due to its higher sequestering ability towards Cu. However, future studies should unveil the potential contribution of Cu in the beneficial effects of polaprezinc.


Assuntos
Artrite , Carnosina , Compostos Organometálicos , Humanos , Zinco/farmacologia , Carnosina/farmacologia , Cobre/farmacologia , Compostos Organometálicos/farmacologia , Compostos de Zinco/farmacologia , Proteínas de Ciclo Celular/farmacologia , Cartilagem
2.
Antioxidants (Basel) ; 12(10)2023 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-37891874

RESUMO

Chronic pain caused by persistent inflammation is current in multiple diseases and has a strong negative impact on society. It is commonly associated with several mental illnesses, which can exert a negative influence on pain perception, and needs to be eradicated. Nevertheless, actual therapies are not sufficiently safe and effective. Recent reports demonstrate that the induction of heme oxygenase-1 (HO-1) enzyme produces analgesic effects in animals with osteoarthritis pain and reverses the grip strength loss caused by sciatic nerve crush. In this research, we evaluated the potential use of three new HO-1 inducers, 1m, 1a, and 1b, as well as dimethyl fumarate (DMF), for treating persistent inflammatory pain induced by the subplantar injection of complete Freud's adjuvant and the functional deficits and emotional sickness associated. The modulator role of these treatments on the inflammatory and antioxidant pathways were also assessed. Our findings revealed that repeated treatment, for four days, with 1m, 1a, 1b, or DMF inhibited inflammatory pain, reversed grip strength deficits, and reversed the linked anxious- and depressive-like behaviors, with 1m being the most effective. These treatments also suppressed the up-regulation of the inflammasome NLRP3 and activated the expression of the Nrf2 transcription factor and the HO-1 and superoxide dismutase 1 enzymes in the paw and/or amygdala, thus revealing the anti-inflammatory and antioxidant capacity of these compounds during inflammatory pain. Results suggest the use of 1m, 1a, 1b, and DMF, particularly 1m, as promising therapies for inflammatory pain and the accompanying functional disabilities and emotional diseases.

3.
Antioxidants (Basel) ; 12(8)2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37627627

RESUMO

A series of copper(II) complexes with the formula [Cu2+Hy(x)Car%] varying the molecular weight (MW) of Hyaluronic acid (Hy, x = 200 or 700 kDa) conjugated with carnosine (Car) present at different loading were synthesized and characterized via different spectroscopic techniques. The metal complexes behaved as Cu, Zn-superoxide dismutase (SOD1) mimics and showed some of the most efficient reaction rate values produced using a synthetic and water-soluble copper(II)-based SOD mimic reported to date. The increase in the percentage of Car moieties parallels the enhancement of the I50 value determined via the indirect method of Fridovich. The presence of the non-functionalized Hy OH groups favors the scavenger activity of the copper(II) complexes with HyCar, recalling similar behavior previously found for the copper(II) complexes with Car conjugated using ß-cyclodextrin or trehalose. In keeping with the new abilities of SOD1 to activate protective agents against oxidative stress in rheumatoid arthritis and osteoarthritis diseases, Cu2+ interaction with HyCar promotes the nuclear translocation of erythroid 2-related factor that regulates the expressions of target genes, including Heme-Oxigenase-1, thus stimulating an antioxidant response in osteoblasts subjected to an inflammatory/oxidative insult.

4.
Bioorg Med Chem ; 73: 117032, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36202063

RESUMO

The overexpression of σ receptors (σRs) in various types of tumors has prompted a deep investigation of their role in cancer pathophysiology. Consequently, σR ligands have been widely studied in vitro and in vivo for their antiproliferative effects as a novel potential class of chemotherapeutic agents, both alone and in combination with other anticancer drugs. A growing body of evidence highlights that σR ligands can inhibit cancer cells' survival, migration, and proliferation, thanks to the modulation of a wide panel of tumorigenic pathways. In addition to their antitumor activity, σR ligands are gaining momentum as radiotracers for PET and SPECT imaging applications. The purpose of this review is to report on recent advances in the development of σR ligands. In particular, herein, we describe the structure-activity relationships of structurally diverse mixed σ1R/σ2R ligands that showed promising antitumor profiles towards a variety of cancer cell lines.


Assuntos
Antineoplásicos , Neoplasias , Receptores sigma , Antineoplásicos/farmacologia , Humanos , Ligantes , Receptores sigma/metabolismo , Relação Estrutura-Atividade
5.
Molecules ; 27(10)2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35630697

RESUMO

This paper reports on a novel series of tyrosine kinase inhibitors (TKIs) potentially useful for the treatment of chronic myeloid leukemia (CML). The newly designed and synthesized compounds are structurally related to nilotinib (NIL), a second-generation oral TKI, and to a series of imatinib (IM)-based TKIs, previously reported by our research group, these latter characterized by a hybrid structure between TKIs and heme oxygenase-1 (HO-1) inhibitors. The enzyme HO-1 was selected as an additional target since it is overexpressed in many cases of drug resistance, including CML. The new derivatives 1a-j correctly tackle the chimeric protein BCR-ABL. Therefore, the inhibition of TK was comparable to or higher than NIL and IM for many novel compounds, while most of the new analogs showed only moderate potency against HO-1. Molecular docking studies revealed insights into the binding mode with BCR-ABL and HO-1, providing a structural explanation for the differential activity. Cytotoxicity on K562 CML cells, both NIL-sensitive and -resistant, was evaluated. Notably, some new compounds strongly reduced the viability of K562 sensitive cells.


Assuntos
Leucemia Mielogênica Crônica BCR-ABL Positiva , Inibidores de Proteínas Quinases , Doença Crônica , Humanos , Mesilato de Imatinib/farmacologia , Células K562 , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Simulação de Acoplamento Molecular , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
6.
ChemMedChem ; 16(23): 3496-3512, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34415107

RESUMO

The development of potent antitumor agents with a low toxicological profile against healthy cells is still one of the greatest challenges facing medicinal chemistry. In this context, the "mutual prodrug" approach has emerged as a potential tool to overcome undesirable physicochemical features and mitigate the side effects of approved drugs. Among broad-spectrum chemotherapeutics available for clinical use today, 5-fluorouracil (5-FU) is one of the most representative, also included in the World Health Organization model list of essential medicines. Unfortunately, severe side effects and drug resistance phenomena are still the primary limits and drawbacks in its clinical use. This review describes the progress made over the last ten years in developing 5-FU-based mutual prodrugs to improve the therapeutic profile and achieve targeted delivery to cancer tissues.


Assuntos
Antimetabólitos Antineoplásicos/uso terapêutico , Inibidores Enzimáticos/uso terapêutico , Fluoruracila/análogos & derivados , Fluoruracila/uso terapêutico , Neoplasias/tratamento farmacológico , Pró-Fármacos/uso terapêutico , Animais , Antimetabólitos Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Sinergismo Farmacológico , Inibidores Enzimáticos/farmacologia , Fluoruracila/farmacologia , Humanos , Pró-Fármacos/farmacologia
7.
Molecules ; 26(13)2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34202711

RESUMO

Cancer is a multifactorial disease that may be tackled by targeting different signaling pathways. Heme oxygenase-1 (HO-1) and sigma receptors (σRs) are both overexpressed in different human cancers, including prostate and brain, contributing to the cancer spreading. In the present study, we investigated whether HO-1 inhibitors and σR ligands, as well a combination of the two, may influence DU145 human prostate and U87MG human glioblastoma cancer cells proliferation. In addition, we synthesized, characterized, and tested a small series of novel hybrid compounds (HO-1/σRs) 1-4 containing the chemical features needed for HO-1 inhibition and σR modulation. Herein, we report for the first time that targeting simultaneously HO-1 and σR proteins may be a good strategy to achieve increased antiproliferative activity against DU145 and U87MG cells, with respect to the mono administration of the parent compounds. The obtained outcomes provide an initial proof of concept useful to further optimize the structure of HO-1/σRs hybrids to develop novel potential anticancer agents.


Assuntos
Antineoplásicos , Inibidores Enzimáticos , Heme Oxigenase-1/antagonistas & inibidores , Proteínas de Neoplasias/antagonistas & inibidores , Neoplasias , Receptores sigma/antagonistas & inibidores , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Heme Oxigenase-1/metabolismo , Humanos , Proteínas de Neoplasias/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Ratos , Receptores sigma/metabolismo
8.
J Enzyme Inhib Med Chem ; 36(1): 1378-1386, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34167427

RESUMO

In this work, the first mutual prodrug of 5-fluorouracil and heme oxygenase1 inhibitor (5-FU/HO-1 hybrid) has been designed, synthesised, and evaluated for its in vitro chemical and enzymatic hydrolysis stability. Predicted in silico physicochemical properties of the newly synthesised hybrid (3) demonstrated a drug-like profile with suitable Absorption, Distribution, Metabolism, and Excretion (ADME) properties and low toxic liabilities. Preliminary cytotoxicity evaluation towards human prostate (DU145) and lung (A549) cancer cell lines demonstrated that 3 exerted a similar effect on cell viability to that produced by the reference drug 5-FU. Among the two tested cancer cell lines, the A549 cells were more susceptible for 3. Of note, hybrid 3 also had a significantly lower cytotoxic effect on healthy human lung epithelial cells (BEAS-2B) than 5-FU. Altogether our results served as an initial proof-of-concept to develop 5-FU/HO-1 mutual prodrugs as potential novel anticancer agents.


Assuntos
Antineoplásicos/farmacologia , Fluoruracila/química , Heme Oxigenase-1/química , Pró-Fármacos/química , Pró-Fármacos/farmacologia , Animais , Antineoplásicos/química , Linhagem Celular Tumoral , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Masculino , Pró-Fármacos/síntese química , Ratos , Ratos Sprague-Dawley , Suínos
9.
Bioconjug Chem ; 32(7): 1374-1392, 2021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-33525868

RESUMO

Over the past decade, porphyrin derivatives have emerged as invaluable synthetic building blocks and theranostic kits for the delivery of cellular fluorescence imaging and photodynamic therapy. Tetraphenylporphyrin (TPP), its metal complexes, and related derivatives have been investigated for their use as dyes in histology and as components of multimodal imaging probes. The photophysical properties of porphyrin-metal complexes featuring radiometals have been a focus of our attention for the realization of fluorescence imaging probes coupled with radioimaging capabilities and therapeutic potential having "true" theranostic promise. We report hereby on the synthesis, radiochemistry, structural investigations, and preliminary in vitro and in vivo uptake studies on a range of functionalized porphyrin-based derivatives. In pursuit of developing new porphyrin-based probes for multimodality imaging applications, we report new functionalized neutral, polycationic, and polyanionic porphyrins incorporating nitroimidazole and sulfonamide moieties, which were used as targeting groups to improve the notoriously poor pharmacokinetics of porphyrin tags. The resulting functional metalloporphyrin species were stable under serum challenges and the nitroimidazole and sulfonamide derivatives remained fluorescent, allowing in vitro confocal studies and visualization of the lysosomal uptake in a gallium(III) sulfonamide derivative. The molecular structures of selected porphyrin derivatives were determined by single crystal X-ray diffraction using synchrotron radiation. We also investigated the nature of the emission/excitation behavior of model functional porphyrins using in silico approaches such as TD DFT in simple solvation models. The conjugation of porphyrins with the [7-13] and [7-14] fragments of bombesin was also achieved, to provide targeting of the gastrin releasing peptide receptor (GRPR). Depending on the metal, probe conjugates of relevance for single photon emission computed tomography (SPECT) or positron emission tomography (PET) probes have been designed and tested hereby, using TPP and related functional free base porphyrins as the bifunctional chelator synthetic scaffold and 111In[In] or 68Ga[Ga], respectively, as the central metal ions. Interestingly, for simple porphyrin conjugates good radiochemical incorporation was obtained for both radiometals, but the presence of peptides significantly diminished the radio-incorporation yields. Although the gallium-68 radiochemistry of the bombesin conjugates did not show radiochemical incorporation suitable for in vivo studies, likely because the presence of the peptide changed the behavior of the TPP-NH2 synthon taken alone, the optical imaging assays indicated that the conjugated peptide tags do mediate uptake of the porphyrin units into cells.


Assuntos
Metaloporfirinas/química , Radioisótopos/química , Ânions , Cátions , Linhagem Celular Tumoral , Teoria da Densidade Funcional , Humanos , Estrutura Molecular , Estudo de Prova de Conceito , Análise Espectral/métodos
10.
Int J Mol Sci ; 21(6)2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32168943

RESUMO

In this paper, a novel series of imidazole-based heme oxygenase-1 (HO-1) inhibitors is reported. These compounds were obtained by modifications of previously described high potent and selective arylethanolimidazoles. In particular, simplification of the central linker and repositioning of the hydrophobic portion were carried out. Results indicate that a hydroxyl group in the central region is crucial for the potency as well as the spatial distribution of the hydrophobic portion. Docking studies revealed a similar interaction of the classical HO-1 inhibitors with the active site of the protein. The most potent and selective compound (5a) was tested for its potential cytotoxic activity against hormone-sensitive and hormone-resistant breast cancer cell lines (MCF-7 and MDA-MB-231).


Assuntos
Antineoplásicos/síntese química , Neoplasias da Mama/enzimologia , Heme Oxigenase-1/antagonistas & inibidores , Imidazóis/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Imidazóis/química , Imidazóis/farmacologia , Células MCF-7 , Simulação de Acoplamento Molecular , Estrutura Molecular
11.
Eur J Med Chem ; 183: 111703, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31550661

RESUMO

Heme oxygenase (HO) enzymes are involved in heme catabolism and several physiological functions. Among the different HO isoforms, HO-2 stands out for its neuroprotective properties and modulatory activity in male reproduction. However, unlike the HO-1 ligands, the potential therapeutic applications of HO-2 inhibitors/activators have not been extensively explored yet. Moreover, the physiological role of HO-2 is still unclear, mostly due to the lack of highly selective HO-2 chemical probes. To boost the interest on this intriguing target, the present review updates the knowledge on the structure-activity relationships of HO-2 inhibitors and activators, as well as their potential therapeutic applications. To the best of our knowledge, among HO-2 inhibitors, clemizole derivatives are the most selective HO-2 inhibitors reported so far (IC50 HO-1 >100 µM, IC50 HO-2 = 3.4 µM), while the HO-2 nonselective inhibitors described herein possess IC50 HO-2 values ≤ 10 µM. Furthermore, the development of HO-2 activators, such as menadione analogues, helped to understand the critical moieties required for HO-2 activation. Recent advances in the potential therapeutic applications of HO-2 inhibitors/activators cover the fields of neurodegenerative, cardiovascular, inflammatory, and reproductive diseases further stimulating the interest towards this target.


Assuntos
Benzimidazóis/farmacologia , Inibidores Enzimáticos/farmacologia , Heme Oxigenase (Desciclizante)/antagonistas & inibidores , Heme Oxigenase (Desciclizante)/metabolismo , Vitamina K 3/farmacologia , Animais , Benzimidazóis/química , Inibidores Enzimáticos/química , Humanos , Estrutura Molecular , Vitamina K 3/química
12.
Eur J Med Chem ; 167: 439-453, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30784878

RESUMO

Heme oxygenases (HOs) are a family of enzymes involved in the selective catabolism of free circulating heme. While HO-2 is constitutively expressed, HO-1 is strongly overexpressed under stressful stimuli (e.g., oxidative stress). Under these conditions, HO-1 exerts its strong cytoprotective activities and plays a crucial role in stimulating cell survival by removing the pro-oxidant heme and by producing carbon monoxide and biliverdin (promptly reduced to bilirubin). Unfortunately, the broad spectrum of HO-1 cytoprotective effects has been well experimentally documented both in normal and tumor cells, where the enzyme can be overexpressed, making it an exciting target in the management of some type of tumors. Development of non-competitive HO-1 inhibitors dates back in 2002 with the discovery of Azalanstat. Since then, many efforts have been devoted to the identification of selective HO-1 and HO-2 inhibitors and to unravel the molecular determinants responsible for selectivity. Molecular modeling studies supported the identification of chemical features involved in the recognition and inhibition of these enzymes. Herein, medicinal chemistry aspects and in silico studies related to the development of HO inhibitors will be discussed. The purpose of this review is to highlight recent advances in the development of new selective HO-1 and HO-2 inhibitors and covers the last six years (2013-2018).


Assuntos
Descoberta de Drogas , Heme Oxigenase (Desciclizante)/antagonistas & inibidores , Heme Oxigenase-1/antagonistas & inibidores , Animais , Inibidores Enzimáticos/uso terapêutico , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA