Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Pain ; 164(11): 2463-2476, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37326644

RESUMO

ABSTRACT: The propensity for breast cancer to metastasize to bone is coupled to the most common complaint among breast cancer patients: bone pain. Classically, this type of pain is treated using escalating doses of opioids, which lack long-term efficacy due to analgesic tolerance, opioid-induced hypersensitivity, and have recently been linked to enhanced bone loss. To date, the molecular mechanisms underlying these adverse effects have not been fully explored. Using an immunocompetent murine model of metastatic breast cancer, we demonstrated that sustained morphine infusion induced a significant increase in osteolysis and hypersensitivity within the ipsilateral femur through the activation of toll-like receptor-4 (TLR4). Pharmacological blockade with TAK242 (resatorvid) as well as the use of a TLR4 genetic knockout ameliorated the chronic morphine-induced osteolysis and hypersensitivity. Genetic MOR knockout did not mitigate chronic morphine hypersensitivity or bone loss. In vitro studies using RAW264.7 murine macrophages precursor cells demonstrated morphine-enhanced osteoclastogenesis that was inhibited by the TLR4 antagonist. Together, these data indicate that morphine induces osteolysis and hypersensitivity that are mediated, in part, through a TLR4 receptor mechanism.


Assuntos
Neoplasias da Mama , Osteólise , Camundongos , Humanos , Animais , Feminino , Morfina/farmacologia , Receptor 4 Toll-Like/genética , Osteólise/induzido quimicamente , Osteólise/tratamento farmacológico , Modelos Animais de Doenças , Analgésicos Opioides/uso terapêutico , Dor/tratamento farmacológico
2.
Pain ; 159(9): 1814-1823, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29781960

RESUMO

Many malignant cancers, including breast cancer, have a propensity to invade bones, leading to excruciating bone pain. Opioids are the primary analgesics used to alleviate this cancer-induced bone pain (CIBP) but are associated with numerous severe side effects, including enhanced bone degradation, which significantly impairs patients' quality of life. By contrast, agonists activating only peripheral CB1 receptors (CB1Rs) have been shown to effectively alleviate multiple chronic pain conditions with limited side effects, yet no studies have evaluated their role(s) in CIBP. Here, we demonstrate for the first time that a peripherally selective CB1R agonist can effectively suppress CIBP. Our studies using a syngeneic murine model of CIBP show that both acute and sustained administration of a peripherally restricted CB1R agonist, 4-{2-[-(1E)-1[(4-propylnaphthalen-1-yl)methylidene]-1H-inden-3-yl]ethyl}morpholine (PrNMI), significantly alleviated spontaneous pain behaviors in the animals. This analgesic effect by PrNMI can be reversed by a systemic administration but not spinal injection of SR141716, a selective CB1R antagonist. In addition, the cancer-induced bone loss in the animals was not exacerbated by a repeated administration of PrNMI. Furthermore, catalepsy and hypothermia, the common side effects induced by cannabinoids, were measured at the supratherapeutic doses of PrNMI tested. PrNMI induced mild sedation, yet no anxiety or a decrease in limb movements was detected. Overall, our studies demonstrate that CIBP can be effectively managed by using a peripherally restricted CB1R agonist, PrNMI, without inducing dose-limiting central side effects. Thus, targeting peripheral CB1Rs could be an alternative therapeutic strategy for the treatment of CIBP.


Assuntos
Analgésicos/uso terapêutico , Dor do Câncer/tratamento farmacológico , Dor Musculoesquelética/tratamento farmacológico , Receptor CB1 de Canabinoide/agonistas , Animais , Antagonistas de Receptores de Canabinoides/farmacologia , Linhagem Celular Tumoral , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Medição da Dor , Rimonabanto/farmacologia , Resultado do Tratamento
3.
J Pain ; 19(6): 612-625, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29371114

RESUMO

Breast cancer metastasizes to bone, diminishing quality of life of patients because of pain, fracture, and limited mobility. Cancer-induced bone pain (CIBP) is characterized as moderate to severe ongoing pain, primarily managed by mu opioid agonists such as fentanyl. However, opioids are limited by escalating doses and serious side effects. One alternative may be kappa opioid receptor (KOR) agonists. There are few studies examining KOR efficacy on CIBP, whereas KOR agonists are efficacious in peripheral and inflammatory pain. We thus examined the effects of the KOR agonist U50,488 given twice daily across 7 days to block CIBP, tumor-induced bone loss, and tumor burden. U50,488 dose-dependently blocked tumor-induced spontaneous flinching and impaired limb use, without changing tactile hypersensitivity, and was fully reversed by the KOR antagonist nor-binaltorphimine. U50,488 treatment was higher in efficacy and duration of action at later time points. U50,488 blocked this pain without altering tumor-induced bone loss or tumor growth. Follow-up studies in human cancer cell lines confirmed that KOR agonists do not affect cancer cell proliferation. These studies suggest that KOR agonists could be a new target for cancer pain management that does not induce cancer cell proliferation or alter bone loss. PERSPECTIVE: This study demonstrates the efficacy of KOR agonists in the treatment of bone cancer-induced pain in mice, without changing tumor size or proliferation in cancer cell lines. This suggests that KOR agonists could be used to manage cancer pain without the drawbacks of mu opioid agonists and without worsening disease progression.


Assuntos
(trans)-Isômero de 3,4-dicloro-N-metil-N-(2-(1-pirrolidinil)-ciclo-hexil)-benzenoacetamida/farmacologia , Analgésicos não Narcóticos/farmacologia , Osso e Ossos/efeitos dos fármacos , Dor do Câncer , Receptores Opioides kappa/agonistas , Animais , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA