Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(20)2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-39456684

RESUMO

In this work, the HR MAS NMR (high-resolution magic-angle spinning nuclear magnetic resonance) spectroscopy technique was combined with standard histological examinations to investigate the metabolic features of high-grade serous ovarian cancer (HGSOC) with a special focus on the relation between a metabolic profile and a cancer cell fraction. The studied group consisted of 44 patients with HGSOC and 18 patients with benign ovarian tumors. Normal ovarian tissue was also excised from 13 control patients. The metabolic profiles of 138 tissue specimens were acquired on a Bruker Avance III 400 MHz spectrometer. The NMR spectra of the HGSOC samples could be discriminated from those acquired from the non-transformed tissue and were shown to depend on tumor purity. The most important features that differentiate the samples with a high fraction of cancer cells from the samples containing mainly fibrotic stroma are the increased intensities in the spectral regions corresponding to phosphocholine/glycerophosphocholine, phosphoethanolamine/serine, threonine, uridine nucleotides and/or uridine diphosphate (UDP) nucleotide sugars. Higher levels of glutamine, glutamate, acetate, lysine, alanine, leucine and isoleucine were detected in the desmoplastic stroma within the HGSOC lesions compared to the stroma of benign tumors. The HR MAS NMR analysis of the metabolic composition of the epithelial and stromal compartments within HGSOC contributes to a better understanding of the disease's biology.


Assuntos
Metabolômica , Neoplasias Ovarianas , Humanos , Feminino , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/metabolismo , Metabolômica/métodos , Pessoa de Meia-Idade , Idoso , Metaboloma , Cistadenocarcinoma Seroso/metabolismo , Cistadenocarcinoma Seroso/patologia , Adulto , Espectroscopia de Ressonância Magnética/métodos , Gradação de Tumores , Espectroscopia de Prótons por Ressonância Magnética/métodos
2.
Cancer Immunol Immunother ; 73(8): 148, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38832958

RESUMO

Immunotherapy is one of the most promising anti-cancer treatment. It involves activating the host's own immune system to eliminate cancer cells. Activation of cGAS-STING pathway is promising therapeutic approach for cancer immunotherapy. However, in human clinical trials, targeting cGAS-STING pathway results in insufficient or unsustainable anti-tumor response. To enhance its effectiveness, combination with other anti-cancer therapies seems essential to achieve synergistic systemic anti-tumor response.The aim of this study was to evaluate whether the combination of STING agonist-cGAMP with anti-vascular RGD-(KLAKLAK)2 peptide results in a better anti-tumor response in poorly immunogenic tumors with various STING protein and αvß3 integrin status.Combination therapy inhibited growth of murine breast carcinoma more effectively than melanoma. In melanoma, the administration of STING agonist alone was sufficient to obtain a satisfactory therapeutic effect. In both tumor models we have noted stimulation of innate immune response following cGAMP administration alone or in combination. The largest population of immune cells infiltrating the TME after therapy were activated NK cells. Increased infiltration of cytotoxic CD8+ T lymphocytes within the TME was only observed in melanoma tumors. However, they also expressed the "exhaustion" PD-1 receptor. In contrast, in breast carcinoma tumors each therapy caused the drop in the number of infiltrating CD8+ T cells.The obtained results indicate an additional therapeutic benefit from combining STING agonist with an anti-vascular agent. However, this effect depends on the type of tumor, the status of its microenvironment and the expression of specific proteins such as STING and αvß3 family integrin.


Assuntos
Proteínas de Membrana , Animais , Camundongos , Proteínas de Membrana/agonistas , Feminino , Humanos , Oligopeptídeos/farmacologia , Nucleotídeos Cíclicos/farmacologia , Nucleotídeos Cíclicos/administração & dosagem , Imunoterapia/métodos , Camundongos Endogâmicos C57BL , Linhagem Celular Tumoral , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/imunologia , Melanoma Experimental/terapia , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia
3.
Stem Cell Res Ther ; 15(1): 27, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38303049

RESUMO

BACKGROUND: Adipose-derived stromal cells (ADSCs) demonstrate ability to promote tissue healing and down-regulate excessive inflammation. ADSCs have been used to treat critical limb ischemia in preclinical and clinical trials, but still, there is little known about their optimal delivery strategy. To date, no direct analysis of different methods of ADSCs delivery has been performed in the hindlimb ischemia model. Therefore, in this study we focused on the therapeutic efficacy of different ADSCs delivery methods in a murine model of hindlimb ischemia. METHODS: For the hADSCs isolation, we used the subcutaneous adipose tissue collected during the surgery. The murine hindlimb ischemia was used as a model. The unilateral femoral artery ligation was performed on 10-12-week-old male C57BL/6. ADSCs were delivered directly into ischemic muscle, into the contralateral muscle or intravenously. 7 and 14 days after the surgery, the gastrocnemius and quadriceps muscles were collected for the immunohistochemical analysis. The results were analyzed with relevant tests using the Statistica software. RESULTS: Our research revealed that muscle regeneration, angiogenesis, arteriogenesis and macrophage infiltration in murine model of hindlimb ischemia differ depending on ADSCs delivery method. We have demonstrated that intramuscular method (directly into ischemic limb) of ADSCs delivery is more efficient in functional recovery after critical limb ischemia than intravenous or contralateral route. CONCLUSIONS: We have noticed that injection of ADSCs directly into ischemic limb is the optimal delivery strategy because it increases: (1) muscle fiber regeneration, (2) the number of capillaries and (3) the influx of macrophages F4/80+/CD206+.


Assuntos
Tecido Adiposo , Isquemia Crônica Crítica de Membro , Camundongos , Masculino , Humanos , Animais , Modelos Animais de Doenças , Neovascularização Fisiológica , Membro Posterior/irrigação sanguínea , Músculo Esquelético , Isquemia/terapia , Células Estromais
4.
Front Oncol ; 13: 1249524, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37655095

RESUMO

Introduction: Targeting tumor vasculature is an efficient weapon to fight against cancer; however, activation of alternative pathways to rebuild the disrupted vasculature leads to rapid tumor regrowth. Immunotherapy that exploits host immune cells to elicit and sustain potent antitumor response has emerged as one of the most promising tools for cancer treatment, yet many treatments fail due to developed resistance mechanisms. Therefore, our aim was to examine whether combination of immunotherapy and anti-vascular treatment will succeed in poorly immunogenic, difficult-to-treat melanoma and triple-negative breast tumor models. Methods: Our study was performed on B16-F10 melanoma and 4T1 breast tumor murine models. Mice were treated with the stimulator of interferon genes (STING) pathway agonist (cGAMP) and vascular disrupting agent combretastatin A4 phosphate (CA4P). Tumor growth was monitored. The tumor microenvironment (TME) was comprehensively investigated using multiplex immunofluorescence and flow cytometry. We also examined if such designed therapy sensitizes investigated tumor models to an immune checkpoint inhibitor (anti-PD-1). Results: The use of STING agonist cGAMP as monotherapy was insufficient to effectively inhibit tumor growth due to low levels of STING protein in 4T1 tumors. However, when additionally combined with an anti-vascular agent, a significant therapeutic effect was obtained. In this model, the obtained effect was related to the TME polarization and the stimulation of the innate immune response, especially activation of NK cells. Combination therapy was unable to activate CD8+ T cells. Due to the lack of PD-1 upregulation, no improved therapeutic effect was observed when additionally combined with the anti-PD-1 inhibitor. In B16-F10 tumors, highly abundant in STING protein, cGAMP as monotherapy was sufficient to induce potent antitumor response. In this model, the therapeutic effect was due to the infiltration of the TME with activated NK cells. cGAMP also caused the infiltration of CD8+PD-1+ T cells into the TME; hence, additional benefits of using the PD-1 inhibitor were observed. Conclusion: The study provides preclinical evidence for a great influence of the TME on the outcome of applied therapy, including immune cell contribution and ICI responsiveness. We pointed the need of careful TME screening prior to antitumor treatments to achieve satisfactory results.

5.
Biomedicines ; 11(6)2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37371868

RESUMO

Radiotherapy (RT) is one of the main treatments for head and neck squamous cell carcinomas (HNSCCs). Unfortunately, radioresistance is observed in many cases of HNSCCs. The effectiveness of RT depends on both the direct effect inducing cell death and the indirect effect of changing the tumor microenvironment (TME). Knowledge of interactions between TME components after RT may help to design a new combined treatment with RT. In the study, we investigated the effect of RT on cell survival and cell secretion in a co-culture model of HNSCCs in vitro. We examined changes in cell proliferation, colony formation, cell cycle phases, type of cell death, cell migration and secretion after irradiation. The obtained results suggest that the presence of fibroblasts and endothelial cells in co-culture with HNSCCs inhibits the function of cell cycle checkpoints G1/S and G2/M and allows cells to enter the next phase of the cell cycle. We showed an anti-apoptotic effect in co-culture of HNSCCs with fibroblasts or endothelial cells in relation to the execution phase of apoptosis, although we initially observed increased activation of the early phase of apoptosis in the co-cultures after irradiation. We hypothesize that the anti-apoptotic effect depends on increased secretion of IL-6 and MCP-1.

6.
Cells ; 12(3)2023 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-36766789

RESUMO

Myeloma bone disease (MBD) is one of the major complications in multiple myeloma (MM)-the second most frequent hematologic malignancy. It is characterized by the formation of bone lesions due to the local action of proliferating MM cells, and to date, no effective therapy has been developed. In this study, we propose a novel approach for the local treatment of MBD with a combination of natural killer cells (NKs) and mesenchymal stem cells (MSCs) within a fibrin scaffold, altogether known as FINM. The unique biological properties of the NKs and MSCs, joined to the injectable biocompatible fibrin, permitted to obtain an efficient "off-the-shelf" ready-to-use composite for the local treatment of MBD. Our in vitro analyses demonstrate that NKs within FINM exert a robust anti-tumor activity against MM cell lines and primary cells, with the capacity to suppress osteoclast activity (~60%) within in vitro 3D model of MBD. Furthermore, NKs' post-thawing cytotoxic activity is significantly enhanced (~75%) in the presence of MSCs, which circumvents the decrease of NKs cytotoxicity after thawing, a well-known issue in the cryopreservation of NKs. To reduce the tumor escape, we combined FINM with other therapeutic agents (bortezomib (BZ), and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)), observing a clear therapeutic synergistic effect in vitro. Finally, the therapeutic efficacy of FINM in combination with BZ and TRAIL was assessed in a mouse model of MM, achieving 16-fold smaller tumors compared to the control group without treatment. These results suggest the potential of FINM to serve as an allogeneic "off-the-shelf" approach to improve the outcomes of patients suffering from MBD.


Assuntos
Doenças Ósseas , Mieloma Múltiplo , Animais , Camundongos , Mieloma Múltiplo/tratamento farmacológico , Linhagem Celular Tumoral , Bortezomib/uso terapêutico , Imunoterapia , Doenças Ósseas/terapia
7.
Anticancer Res ; 42(10): 4763-4772, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36191991

RESUMO

BACKGROUND/AIM: Numerous studies have demonstrated an anti-cancer action of plant-derived polyphenols. Their action is mainly related to antioxidant, anti-inflammatory, immunomodulatory and inhibitory properties. It is expected that proper composition of nutrition factors with anti-cancer activity may prevent from cancer incidence or inhibit cancer progression. The aim of the study was to investigate the anti-cancer properties of a standardized composition of compounds: trans-resveratrol, quercetin, vitamin E and selenium (Neoplasmoxan, Vebiot) in a mouse model of CT26 colorectal carcinoma. MATERIALS AND METHODS: Colorectal carcinoma cells (CT26) were introduced subcutaneously (2×105/mouse) on the back of the mice. Neoplasmoxan suspension was administered intragastrically, daily, for 21 consecutive days. In collected tumors, the area occupied by tumor blood vessels and the number of immune cells; macrophages and CD8-positive cytotoxic T lymphocytes were evaluated. RESULTS: It was observed that administration of Neoplasmoxan inhibits the growth of colorectal carcinoma in mice. Tumor volume after Neoplasmoxan administration was 40% smaller than in control groups. No overall toxicity of Neoplasmoxan was observed. The area of blood vessels in tumors of mice that received Neoplasmoxan was reduced by approximately 20%. The area occupied by macrophages increased about 60% compared to the control group. However, no increased number of CD8-positive cytotoxic T lymphocytes was observed in the group that received Neoplasmoxan. CONCLUSION: A tendency of Neoplasmoxan to inhibit the growth of colorectal carcinoma was recorded. It also seems that additional combination of the tested preparation with standard chemotherapy or radiotherapy should bring a synergistic therapeutic effect.


Assuntos
Antineoplásicos , Neoplasias Colorretais , Selênio , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Linhagem Celular Tumoral , Neoplasias Colorretais/tratamento farmacológico , Camundongos , Quercetina/farmacologia , Resveratrol/farmacologia , Selênio/farmacologia , Vitamina E/farmacologia
8.
Sci Rep ; 11(1): 18335, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34526531

RESUMO

Due to immunosuppressive properties and confirmed tropism towards cancer cells mesenchymal stromal cells (MSC) have been used in many trials. In our study we used these cells as carriers of IL-12 in the treatment of mice with primary and metastatic B16-F10 melanomas. IL-12 has confirmed anti-cancer activity, induces a strong immune response against cancer cells and acts as an anti-angiogenic agent. A major limitation of the use of IL-12 in therapy is its systemic toxicity. The aim of the work was to develop a system in which cytokine may be administered intravenously without toxic side effects. In this study MSC were used as carriers of the IL-12. We confirmed antitumor effectiveness of the cells secreting IL-12 (MSC/IL-12) in primary and metastatic murine melanoma models. We observed inhibition of tumor growth and a significant reduction in the number of metastases in mice after MSC/IL-12 administration. MSC/IL-12 decreased vascular density and increased the number of anticancer M1 macrophages and CD8+ cytotoxic T lymphocytes in tumors of treated mice. To summarize, we showed that MSC are an effective, safe carrier of IL-12 cytokine. Administered systemically they exert therapeutic properties of IL-12 cytokine without toxicity. Therapeutic effect may be a result of pleiotropic (proinflammatory and anti-angiogenic) properties of IL-12 released by modified MSC.


Assuntos
Interleucina-12/metabolismo , Melanoma/terapia , Transplante de Células-Tronco Mesenquimais/métodos , Animais , Linhagem Celular Tumoral , Células Cultivadas , Interleucina-12/genética , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Metástase Neoplásica , Linfócitos T Citotóxicos/imunologia , Microambiente Tumoral/imunologia , Macrófagos Associados a Tumor/imunologia
9.
Cancers (Basel) ; 13(16)2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34439079

RESUMO

Vascular disrupting agents (VDAs), such as DMXAA, effectively destroy tumor blood vessels and cause the formation of large areas of necrosis in the central parts of the tumors. However, the use of VDAs is associated with hypoxia activation and residues of rim cells on the edge of the tumor that are responsible for tumor regrowth. The aim of the study was to combine DMXAA with radiotherapy (brachytherapy) and find the appropriate administration sequence to obtain the maximum synergistic therapeutic effect. We show that the combination in which tumors were irradiated prior to VDAs administration is more effective in murine melanoma growth inhibition than in either of the agents individually or in reverse combination. For the first time, the significance of immune cells' activation in such a combination is demonstrated. The inhibition of tumor growth is linked to the reduction of tumor blood vessels, the increased infiltration of CD8+ cytotoxic T lymphocytes and NK cells and the polarization of macrophages to the cytotoxic M1 phenotype. The reverse combination of therapeutic agents showed no therapeutic effect and even abolished the effect of DMXAA. The combination of brachytherapy and vascular disrupting agent effectively inhibits the growth of melanoma tumors but requires careful planning of the sequence of administration of the agents.

10.
Int J Pharm ; 602: 120596, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33857588

RESUMO

The local administration of different drugs in anticancer therapy continue to attract attention. Thus, the idea of local delivery of cytostatics from nonwoven-structured polyesters seems to be highly desirable. It could reduce systemic drug levels and provide high local concentration of the chemotherapeutics at the tumor site and contribute to enhance the efficiency of the anticancer therapy. Poly(glycolide-ɛ-caprolactone) (PGCL) and poly(D,L-lactide-co-glycolide) (PLGA) synthesized with zirconium-based initiator have been used to prepare electrospun, drug-eluting patches since they possess very good fiber-forming ability. Well-known chemotherapeutic drug-paclitaxel has been loaded into fibrous structure as a model anticancer agent in order to obtain drug delivery systems for local administration. The drug dose in obtained nonwovens might be regulated by the thickness and total area of the implanted patches. Electrospinning of PGCL/PLGA blend allowed to obtain soft and flexible implantable materials. Flexibility has been important factor since it ensures convenient use when covering a tumor or filling a resection cavity. The effectiveness of designed nonwovens presented in the study has been tested in vivo on mouse model of breast cancer. The growth of the tumors was slowed down during in vivo study in comparison with drug-free nonwovens- The volume of the tumor was 40% lower. Drug-loaded electrospun systems implanted locally to the tumor site was further combined with brachytherapy which improved the effectiveness of the therapy in about 18%. Detailed analysis of the nonwovens before and during degradation process has been performed by means of Scanning Electron Microscopy, Differential Scanning Calorimetry, Nuclear Magnetic Resonance, Gel Permeation Chromatography, X-ray Diffraction. The molar mass changes of the nonwoven were quite rapid contrary to changes of comonomer unit content, thermal properties and morphology of the fiber.


Assuntos
Braquiterapia , Paclitaxel , Animais , Ácido Láctico , Camundongos , Poliésteres , Ácido Poliglicólico , Copolímero de Ácido Poliláctico e Ácido Poliglicólico
11.
Cells ; 10(5)2021 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-33919155

RESUMO

Cellular immunotherapy is becoming a new pillar in cancer treatment after recent striking results in different clinical trials with chimeric antigen receptor T cells. However, this innovative therapy is not exempt from challenges such as off-tumor toxicity, tumor recurrence in heterogeneous tumors, and affordability. To surpass these limitations, we exploit the unique anti-tumor characteristics of natural killer (NK) cells. In this study, we aimed to obtain a clinically relevant number of allogeneic NK cells derived from peripheral blood (median of 14,050 million cells from a single donor) to target a broad spectrum of solid and liquid tumor types. To boost their anti-tumor activity, we combined allogeneic NK cells with the approved anti-cluster of differentiation 38 (CD-38) monoclonal antibody Daratumumab to obtain a synergistic therapeutic effect against incurable multiple myeloma. The combination therapy was refined with CD16 polymorphism donor selection and uncomplicated novel in vitro pretreatment to avoid undesired fratricide, increasing the in vitro therapeutic effect against the CD-38 positive multiple myeloma cell line by more than 20%. Time-lapse imaging of mice with established human multiple myeloma xenografts revealed that combination therapy of selected and pretreated NK cells with Daratumumab presented tumor volumes 43-fold smaller than control ones. Combination therapy with an allogeneic source of fully functional NK cells could be beneficial in future clinical settings to circumvent monoclonal antibodies' low therapeutic efficiency due to NK cell dysfunctionality in MM patients.


Assuntos
Anticorpos Monoclonais/farmacologia , Antineoplásicos Imunológicos/farmacologia , Terapia Baseada em Transplante de Células e Tecidos/métodos , Imunoterapia/métodos , Células Matadoras Naturais/imunologia , Mieloma Múltiplo/tratamento farmacológico , Animais , Estudos de Casos e Controles , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Camundongos SCID
12.
Eur J Pharmacol ; 891: 173692, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33130277

RESUMO

Tumor blood vessel formation is a key process for tumor expansion. Tumor vessels are abnormal and differ from normal vessels in architecture and components. Besides oxygen and nutrients supply, the tumor vessels system, due to its abnormality, is responsible for: hypoxia formation, and metastatic routes. Tumor blood vessels can be a target of anti-cancer therapies. There are two types of therapies that target tumor vessels. The first one is the inhibition of the angiogenesis process. However, the inhibition is often ineffective because of alternative angiogenesis mechanism activation. The second type is a specific targeting of existing tumor blood vessels by vascular disruptive agents (VDAs). There are three groups of VDAs: microtubule destabilizing drugs, flavonoids with anti-vascular functions, and tumor vascular targeted drugs based on endothelial cell receptors. However, VDAs possess some limitations. They may be cardiotoxic and their application in therapy may leave viable residual, so called, rim cells on the edge of the tumor. However, it seems that a well-designed combination of VDAs with other anti-cancer drugs may bring a significant therapeutic effect. In this article, we describe three groups of vascular disruptive agents with their advantages and disadvantages. We mention VDAs clinical trials. Finally, we present the current possibilities of VDAs combination with other anti-cancer drugs.


Assuntos
Inibidores da Angiogênese/uso terapêutico , Células Endoteliais/efeitos dos fármacos , Flavonoides/uso terapêutico , Neoplasias/irrigação sanguínea , Neoplasias/tratamento farmacológico , Neovascularização Patológica , Moduladores de Tubulina/uso terapêutico , Inibidores da Angiogênese/efeitos adversos , Animais , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Flavonoides/efeitos adversos , Humanos , Terapia de Alvo Molecular , Neoplasias/metabolismo , Neoplasias/patologia , Transdução de Sinais , Moduladores de Tubulina/efeitos adversos , Hipóxia Tumoral , Microambiente Tumoral
13.
Antioxidants (Basel) ; 9(12)2020 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-33287312

RESUMO

OBJECTIVE: Heme oxygenase-1 (HO-1) is a cytoprotective, proangiogenic and anti-inflammatory enzyme that is often upregulated in tumors. Overexpression of HO-1 in melanoma cells leads to enhanced tumor growth, augmented angiogenesis and resistance to anticancer treatment. The effect of HO-1 in host cells on tumor development is, however, hardly known. METHODS AND RESULTS: To clarify the effect of HO-1 expression in host cells on melanoma progression, C57BL/6xFvB mice of different HO-1 genotypes, HO-1+/+, HO-1+/-, and HO-1-/-, were injected with the syngeneic wild-type murine melanoma B16(F10) cell line. Lack of HO-1 in host cells did not significantly influence the host survival. Nevertheless, in comparison to the wild-type counterparts, the HO-1+/- and HO-1-/- males formed bigger tumors, and more numerous lung nodules; in addition, more of them had liver and spleen micrometastases. Females of all genotypes developed at least 10 times smaller tumors than males. Of importance, the growth of primary and secondary tumors was completely blocked in HO-1+/+ females. This was related to the increased infiltration of leukocytes (mainly lymphocytes T) in primary tumors. CONCLUSIONS: Although HO-1 overexpression in melanoma cells can enhance tumor progression in mice, its presence in host cells, including immune cells, can reduce growth and metastasis of melanoma.

14.
Int J Mol Sci ; 21(13)2020 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-32605154

RESUMO

Radiotherapy (RT) is one of the major methods of cancer treatment. RT destroys cancer cells, but also affects the tumor microenvironment (TME). The delicate balance between immunomodulation processes in TME is dependent, among other things, on a specific radiation dose. Despite many studies, the optimal dose has not been clearly determined. Here, we demonstrate that brachytherapy (contact radiotherapy) inhibits melanoma tumor growth in a dose-dependent manner. Doses of 10Gy and 15Gy cause the most effective tumor growth inhibition compared to the control group. Brachytherapy, at a single dose of ≥ 5Gy, resulted in reduced tumor blood vessel density. Only a dose of 10Gy had the greatest impact on changes in the levels of tumor-infiltrating immune cells. It most effectively reduced the accumulation of protumorogenic M2 tumor-associated macrophages and increased the infiltration of cytotoxic CD8+ T lymphocytes. To summarize, more knowledge about the effects of irradiation doses in anticancer therapy is needed. It may help in the optimization of RT treatment. Our results indicate that a single dose of 10Gy leads to the development of a robust immune response. It seems that it is able to convert a tumor microenvironment into an "in situ" vaccine and lead to a significant inhibition of tumor growth.


Assuntos
Braquiterapia/métodos , Linfócitos do Interstício Tumoral/imunologia , Melanoma Experimental/radioterapia , Microambiente Tumoral/imunologia , Vacinação/métodos , Animais , Apoptose , Proliferação de Células , Feminino , Imunomodulação , Melanoma Experimental/imunologia , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL , Dosagem Radioterapêutica , Células Tumorais Cultivadas
15.
Eur J Pharmacol ; 883: 173354, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32663541

RESUMO

Neovascularization, the process of new blood vessels formation in response to hypoxia induced signals, is an essential step during wound healing or ischemia repair. It follows as a cascade of consecutive events leading to new blood vessels formation and their subsequent remodeling to a mature and functional state, enabling tissue regeneration. Any disruption in consecutive stages of neovascularization can lead to chronic wounds or impairment of tissue repair. In the study we try to explain the biological basis of accelerated blood vessels formation in ischemic tissue after adipose tissue-derived stromal cells (ADSCs) administration. Experiments were performed on mouse models of hindlimb ischemia. We have evaluated the level of immune cells (neutrophils, macrophages) infiltration. The novelty of our work was the assessment of bone marrow-derived stem/progenitor cells (BMDCs) infiltration and their contribution to the neovascularization process in ischemic tissue. We have noticed that ADSCs regulated immune response and affected the kinetics and ratio of macrophages population infiltrating ischemic tissue. Our research revealed that ADSCs promoted changes in the morphology of infiltrating macrophages and their tight association with forming blood vessels. We assume that recruited macrophages may take over the role of pericytes and stabilize the new blood vessel or even differentiate into endothelial cells, which in consequence can accelerate vascular formation upon ADSCs administration. Our findings indicate that administration of ADSCs into ischemic muscle influence spatio-temporal distribution of infiltrating cells (macrophages, neutrophils and BMDCs), which are involved in each step of vascular formation, promoting effective ischemic tissue neovascularization.


Assuntos
Células Endoteliais/metabolismo , Macrófagos/metabolismo , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Músculo Esquelético/irrigação sanguínea , Neovascularização Fisiológica , Tecido Adiposo/citologia , Animais , Comunicação Celular , Transdiferenciação Celular , Células Cultivadas , Modelos Animais de Doenças , Células Endoteliais/patologia , Isquemia/metabolismo , Isquemia/fisiopatologia , Cinética , Macrófagos/patologia , Masculino , Células-Tronco Mesenquimais/patologia , Camundongos Endogâmicos C57BL , Fenótipo , Transdução de Sinais
16.
Sci Rep ; 10(1): 5698, 2020 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-32210342

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

17.
Stem Cell Res Ther ; 10(1): 235, 2019 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-31383013

RESUMO

BACKGROUND: Adipose tissue-derived mesenchymal stromal cells (ASCs) have been shown to exhibit some promising properties of their use in regenerative medicine as advanced therapy medicinal products (ATMP). However, different sources of their origin, methods of isolation, and expansion procedures cause the laboratory and clinical results difficult to compare. METHODS: ASCs were isolated from lipoaspirates and cultured in three different medium formulations: αMEM and DMEM as a basal medium supplemented with 10% of human platelet lysate (hPL) and DMEM supplemented with 20% fetal bovine serum (FBS) and bFGF as a gold standard medium. Subsequently, the impact of culture media on ASCs growth kinetics, their morphology and immunophenotype, ability to differentiate, clonogenic potential, and secretion profile was evaluated. RESULTS: All cultured ASCs lines showed similar morphology and similar clonogenic potential and have the ability to differentiate into three lines: adipocytes, osteoblasts, and chondroblasts. The immunophenotype of all cultured ASCs was consistent with the guidelines of the International Society for Cell Therapy (ISCT) allowing to define cells as mesenchymal stromal cell (MSC) (≥ 95% CD105, CD73, CD90 and ≤ 2% CD45, CD34, CD14, CD19, HLA-DR). The immunophenotype stabilized after the second passage and did not differ between ASCs cultured in different conditions. The exception was the ASCs grown in the presence of FBS and bFGF, which expressed CD146 antigens. The secretion profile of ASCs cultured in different media was similar. The main secreted cytokine was IL-6, and its level was donor-specific. However, we observed a strong influence of the medium formulation on ASCs growth kinetics. The proliferation rate of ASCs in medium supplemented with hPL was the highest. CONCLUSIONS: Culture media that do not contain animal-derived antigens (xeno-free) can be used to culture cells defined as MSC. Xeno-free medium is a safe alternative for the production of clinical-grade MSC as an advanced therapy medicinal product. Additionally, in such culture conditions, MSC can be easily expanded in accordance with the Good Manufacturing Process (GMP) requirements to a desired amount of cells for clinical applications.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Meios de Cultura/farmacologia , Adipogenia , Tecido Adiposo/citologia , Adulto , Antígeno CD146/metabolismo , Proliferação de Células , Células Cultivadas , Condrogênese , Meios de Cultura/química , Feminino , Fator 2 de Crescimento de Fibroblastos/farmacologia , Humanos , Imunofenotipagem , Interleucina-6/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Pessoa de Meia-Idade , Osteogênese
18.
Cell Prolif ; 52(6): e12672, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31441162

RESUMO

OBJECTIVES: Application of non-invasive imaging methods plays an important role in the assessment of cellular therapy effects in peripheral artery disease. The purpose of this work was to evaluate the kinetics of MRI-derived parameters characterizing ischaemic hindlimb muscle after administration of human mesenchymal stromal cells derived from adipose tissue (hADSC) in mice. MATERIALS AND METHODS: MRI experiments were performed on a 9.4T Bruker system. The measurement protocol included transverse relaxation time mapping and diffusion tensor imaging. The monitoring period encompassed 14 days after femoral artery ligation and subsequent cell administration. The effect of hADSC transplantation was compared with the effect of normal human dermal fibroblasts (NHDFs) and phosphate-buffered saline injection. RESULTS: The most significant differences between the hADSC group and the remaining ones were observed around day 3 after ischaemia induction (increased transverse relaxation time in the hADSC group in comparison with the control group) and around day 7 (increased transverse relaxation time and decreased third eigenvalue of the diffusion tensor in the hADSC group in comparison with the control and NHDF groups) at the site of hADSC injection. Histologically, it was associated with increased macrophage infiltration at days 3-7 and with the presence of small regenerating fibres in the ischaemic tissue at day 7. CONCLUSIONS: Our results underscore the important role of macrophages in mediating the therapeutic effects of hADSCs and confirm the huge potential of magnetic resonance imaging in monitoring of cellular therapy effects.


Assuntos
Tecido Adiposo/citologia , Diferenciação Celular/fisiologia , Isquemia/patologia , Células-Tronco Mesenquimais/citologia , Animais , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Imagem de Tensor de Difusão/métodos , Fibroblastos/patologia , Humanos , Masculino , Camundongos Transgênicos , Neovascularização Fisiológica/fisiologia , Regeneração/efeitos dos fármacos , Regeneração/fisiologia
19.
Int J Mol Sci ; 20(13)2019 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-31261963

RESUMO

Radiotherapy (RT), besides cancer cells, also affects the tumor microenvironment (TME): tumor blood vessels and cells of the immune system. It damages endothelial cells and causes radiation-induced inflammation. Damaged vessels inhibit the infiltration of CD8+ T lymphocytes into tumors, and immunosuppressive pathways are activated. They lead to the accumulation of radioresistant suppressor cells, including tumor-associated macrophages (TAMs) with the M2 phenotype, myeloid-derived suppressor cells (MDSCs), and regulatory T cells (Tregs). The area of tumor hypoxia increases. Hypoxia reduces oxygen-dependent DNA damage and weakens the anti-cancer RT effect. It activates the formation of new blood vessels and leads to cancer relapse after irradiation. Irradiation may also activate the immune response through immunogenic cell death induction. This leads to the "in situ" vaccination effect. In this article, we review how changes in the TME affect radiation-induced anticancer efficacy. There is a very delicate balance between the activation of the immune system and the immunosuppression induced by RT. The effects of RT doses on immune system reactions and also on tumor vascularization remain unclear. A better understanding of these interactions will contribute to the optimization of RT treatment, which may prevent the recurrence of cancer.


Assuntos
Sistema Imunitário/efeitos da radiação , Neoplasias/radioterapia , Radioterapia/efeitos adversos , Microambiente Tumoral/efeitos da radiação , Animais , Humanos , Neoplasias/imunologia , Neoplasias/patologia , Radioterapia/métodos , Microambiente Tumoral/imunologia
20.
Stem Cell Res Ther ; 10(1): 93, 2019 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-30867059

RESUMO

BACKGROUND: Adipose-derived mesenchymal stromal cells (ADSCs) are multipotent stromal cells. The cells secrete a number of cytokines and growth factors and show immunoregulatory and proangiogenic properties. Their properties may be used to repair damaged tissues. The aim of our work is to explain the muscle damage repair mechanism with the utilization of the human adipose-derived mesenchymal stromal cells (hADSCs). METHODS: For the hADSCs isolation, we used the subcutaneous adipose tissue collected during the surgery. The murine hind limb ischemia was used as a model. The unilateral femoral artery ligation was performed on 10-12-week-old male C57BL/6NCrl and NOD SCID mice. The mice received PBS- (controls) or 1 × 106 hADSCs. One, 3, 7, 14 and 21 days after the surgery, we collected the gastrocnemius muscles for the immunohistochemical analysis. The results were analyzed with relevant tests using the Statistica software. RESULTS: The retention time of hADSCs in the limb lasted about 14 days. In the mice receiving hADSCs, the improvement in the functionality of the damaged limb occurred faster than in the control mice. More new blood vessels were formed in the limbs of the mice receiving hADSCs than in limbs of the control mice. hADSCs also increased the infiltration of the macrophages with the M2 phenotype (7-AAD-/CD45+/F4/80+/CD206+) into the ischemic limbs. hADSCs introduced into the limb of mice secreted interleukin-6. This cytokine stimulates the emergence of the proangiogenic M2 macrophages, involved, among others, in the repair of a damaged tissue. Both macrophage depletion and IL-6 blockage suppressed the therapeutic effect of hADSCs. In the mice treated with hADSCs and liposomes with clodronate (macrophages depletion), the number of capillaries formed was lower than in the mice treated with hADSCs alone. Administration of hADSCs to the mice that received siltuximab (human IL-6 blocker) did not cause an influx of the M2 macrophages, and the number of capillaries formed was at the level of the control group, as in contrast to the mice that received only the hADSCs. CONCLUSIONS: The proposed mechanism for the repair of the damaged muscle using hADSCs is based on the activity of IL-6. In our opinion, the cytokine, secreted by the hADSCs, stimulates the M2 macrophages responsible for repairing damaged muscle and forming new blood vessels.


Assuntos
Tecido Adiposo/metabolismo , Interleucina-6/biossíntese , Macrófagos/metabolismo , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Músculo Esquelético , Tecido Adiposo/patologia , Animais , Xenoenxertos , Humanos , Macrófagos/patologia , Masculino , Células-Tronco Mesenquimais/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Músculo Esquelético/lesões , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA