Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Cancer Res Clin Oncol ; 150(4): 209, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38656555

RESUMO

PURPOSE: The receptor-interacting protein kinase (RIPK4) has an oncogenic function in melanoma, regulates NF-κB and Wnt/ß-catenin pathways, and is sensitive to the BRAF inhibitors: vemurafenib and dabrafenib which lead to its decreased level. As its role in melanoma remains not fully understood, we examined the effects of its downregulation on the transcriptomic profile of melanoma. METHODS: Applying RNA-seq, we revealed global alterations in the transcriptome of WM266.4 cells with RIPK4 silencing. Functional partners of RIPK4 were evaluated using STRING and GeneMANIA databases. Cells with transient knockdown (via siRNA) and stable knockout (via CRISPR/Cas9) of RIPK4 were stimulated with TNF-α. The expression levels of selected proteins were assessed using Western blot, ELISA, and qPCR. RESULTS: Global analysis of gene expression changes indicates a complex role for RIPK4 in regulating adhesion, migration, proliferation, and inflammatory processes in melanoma cells. Our study highlights potential functional partners of RIPK4 such as BIRC3, TNF-α receptors, and MAP2K6. Data from RIPK4 knockout cells suggest a putative role for RIPK4 in modulating TNF-α-induced production of IL-8 and IL-6 through two distinct signaling pathways-BIRC3/NF-κB and p38/MAPK. Furthermore, increased serum TNF-α levels and the correlation of RIPK4 with NF-κB were revealed in melanoma patients. CONCLUSION: These data reveal a complex role for RIPK4 in regulating the immune signaling network in melanoma cells and suggest that this kinase may represent an alternative target for melanoma-targeted adjuvant therapy.


Assuntos
Interleucina-6 , Interleucina-8 , Melanoma , Fator de Necrose Tumoral alfa , Humanos , Melanoma/metabolismo , Melanoma/genética , Melanoma/patologia , Melanoma/tratamento farmacológico , Interleucina-6/genética , Interleucina-6/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-8/metabolismo , Interleucina-8/genética , Linhagem Celular Tumoral , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proliferação de Células , Regulação Neoplásica da Expressão Gênica
2.
Ginekol Pol ; 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36929801

RESUMO

OBJECTIVES: Numerous physical and chemical processes lead to rupture of membranes. Within the fetal membranes there are numerous types of metalloproteinases, which cause collagen type I degradation. The C-terminal telopeptide of colagen type I (ICTP) is the breakdown product of type I collagen. The aim of the study was to determine whether ICTP is secreted into the vaginal-cervical fluid (VCF) in the case of physiological rupture of the membranes of the fetus before delivery. MATERIAL AND METHODS: The study was conducted in March 2021 at the Department of Obstetrics and Perinatology of the Jagiellonian University in Cracow, Poland. Twenty-three cases were included in the study. During routine gynecological examination with the use of specula, VCF was collected twice in a volume of 50 µL. The obtained material was then subjected to enzyme immunoassay using the Human C-telopeptide of type I collagen (ICTP) ELISA Kit (Catalog Number. CSB-E10363h). The concentration of ICTP in the sample was calibrated. The concentration range that the device can detect was 25 ng /mL-800 ng/mL. RESULTS: The presence of ICTP in the VCF was confirmed. The minimum concentration was 43.72 ng/mL, the maximum was 762.59, in five cases the concentration was outside the maximum scale of the device. CONCLUSIONS: ICTP was confirmed in the VCF of pregnant women before physiological delivery. Further studies are required to accurately evaluate ICTP as a marker of the processes of collagen degradation in fetal membranes in the mechanism of physiological labor and premature rupture of the membranes.

3.
Sci Rep ; 11(1): 11576, 2021 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-34078999

RESUMO

We studied a sample of 146 Polish, exclusively breastfeeding mothers and their healthy born on time infants to explore the effect of perinatal psychosocial stress on breast milk composition. Maternal perinatal stress was assessed using Recent Life Changes Questionnaire summarizing stressful events from the previous six months. Stress reactivity was determined by administering the cold pressor test and measuring cortisol in saliva samples taken during the test. Breast milk sample was taken to measure energy, protein, fat, lactose, and fatty acid content. Analyses revealed that stress reactivity was positively associated with milk fat and long-chain unsaturated fatty acids and negatively associated with milk lactose. Perinatal psychosocial stress negatively affected energy density, fat as well as medium-chain and long-chain saturated fatty acids in milk. These results, together with previous studies, advocate monitoring maternal psychological status during the peripartum to promote breastfeeding and healthy infant nutrition.


Assuntos
Hidrocortisona/análise , Leite Humano/química , Estresse Psicológico , Adulto , Feminino , Humanos , Recém-Nascido , Gravidez , Saliva/química
4.
J Inorg Biochem ; 214: 111300, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33166865

RESUMO

An eco-friendly, efficient, and controlled synthesis of gold nanoparticles with application of the aqueous extract of Rosa damascena (Au@RD NPs) without using any other reducing agents was studied. Au@RD NPs of narrow size distribution were characterized by UV-vis and FT-IR spectroscopies, transmission electron microscopy, X-ray powder diffraction, X-ray photoelectron spectroscopy, particle size analysis, and zeta potential measurements. In vitro stability experiments revealed that the Au@RD NPs were stable for over a year (pH ~ 3.5), proving a significant stabilizing potential of the aqueous RD extract. The high total content of polyphenols, flavonoids, and reducing sugars along with the powerful antioxidant activity of the RD extract was determined by spectroscopic and analytical methods. Colloids prepared from the purified and lyophilized Au@RD NPs (electrokinetic potential of ca. -33 mV) were stable for at least 24 h under terms similar to physiological conditions (pH = 7.4, PBS). The in vitro cytotoxicity of Au@RD NPs was investigated against peripheral blood mononuclear lymphocytes (PBML), acute promyelocytic leukemia (HL60), and human lung adenocarcinoma (A549). Selective cytotoxicity of Au@RD NPs towards cancer cells (HL60, A549) over normal cells (PBML) in vitro was explicitly demonstrated by viability assays. Comet assay revealed a higher level of DNA damages in cancer cells when compared with normal ones. Apoptotic death in cancer cells was proved by measuring caspases activity. Thus, the developed Au@RD NPs, obtained by the plant-mediated green synthesis, are attractive hybrid materials for the medical applications combining two active components - metal nanoparticles platform and plant-derived metabolites.


Assuntos
Adenocarcinoma de Pulmão/tratamento farmacológico , Citotoxinas , Ouro , Leucemia Promielocítica Aguda/tratamento farmacológico , Leucócitos Mononucleares/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Nanopartículas Metálicas , Extratos Vegetais/química , Rosa/química , Células A549 , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/patologia , Citotoxinas/síntese química , Citotoxinas/química , Citotoxinas/farmacologia , Ouro/química , Ouro/farmacologia , Células HL-60 , Humanos , Leucemia Promielocítica Aguda/metabolismo , Leucemia Promielocítica Aguda/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico
5.
Antioxidants (Basel) ; 9(11)2020 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-33202797

RESUMO

Acetic fermentation is a method for processing plant material which has been known since antiquity. Balsamic and apple cider vinegars are investigated as antibacterial, anti-obesity, and anti-diabetic remedies. However, there is little information about vinegars fermented from aromatic herbs and edible plants. The aim of this study was to compare extracts used for culinary and medicinal purposes according to their composition, antioxidant power, and genoprotective properties. Fermented vinegars, acetic macerates, decoctions, and tinctures in 70% ethanol from raspberries, apple peels, rosehips, lavender, mint, and rose petals were prepared. Polyphenols, ascorbate, carotenoid concentrations, and antioxidant power were analyzed. The polyphenols were identified using HPLC (high-performance liquid chromatography). The genoprotective properties were measured using a comet assay on lymphocytes. Fermented vinegars were poorest in phytochemicals in comparison to tinctures, decoctions, or acetic macerates, although they contained the highest concentration of metal ions. The antioxidant abilities were correlated to the phenolic content of extract. None of the extracts induced DNA damages into lymphocytes. The rosehip and rose petal extracts revealed the highest genoprotective abilities, while mint and apple fermented vinegars and decoctions had the lowest. Fermented vinegars are not a rich source of phytochemicals and they show weak genoprotective abilities, but, in increasing demand for antioxidants, any form of phytochemical sources is an added-value in diet.

6.
Acta Biochim Pol ; 67(4): 605-611, 2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-33108147

RESUMO

In the present study, we investigated the influence of resveratrol on PhIP treated human colon cancer cells and compared the effect to HaCaT cells considered as normal, human keratinocytes. Our results show that resveratrol decreases DNA damage in both cell types, it increases the sensitivity of LoVo cells to apoptosis and has no effect on PhIP-treated HaCaT cells. We confirm that PhIP-induced apoptosis is p53 and caspase 3/7 dependent. Interestingly, normal cells such as HaCaT, which lack functional p53 are more resistant to PhIP treatment.


Assuntos
Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Carcinógenos/farmacologia , Imidazóis/farmacologia , Resveratrol/farmacologia , Apoptose/genética , Caspase 3/genética , Caspase 3/metabolismo , Caspase 7/genética , Caspase 7/metabolismo , Linhagem Celular Tumoral , Sinergismo Farmacológico , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Regulação da Expressão Gênica , Células HaCaT , Humanos , Especificidade de Órgãos , Transdução de Sinais , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
7.
Physiol Biochem Zool ; 93(2): 90-96, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32011970

RESUMO

Oxidative stress, the imbalance of reactive oxygen species and antioxidant capacity, may cause damage to biomolecules pivotal for cellular processes (e.g., DNA). This may impair physiological performance and, therefore, drive life-history variation and aging rate. Because aerobic metabolism is supposed to be the main source of such oxidative risk, the rate of oxygen consumption should be positively associated with the level of damage and/or antioxidants. Empirical support for such relationships remains unclear, and recent considerations suggest even a negative relationship between metabolic rate and oxidative stress. We investigated the relationship between standard metabolic rate (SMR), antioxidants, and damage in blood plasma and erythrocytes for 35 grass snakes (Natrix natrix). Reactive oxygen metabolites (dROMs) and nonenzymatic antioxidants were assessed in plasma, while two measures of DNA damage and the capacity to neutralize H2O2 were measured in erythrocytes. Plasma antioxidants showed no correlation to SMR, and the level of dROMs was positively related to SMR. A negative relationship between antioxidant capacity and SMR was found in erythrocytes, but no association of SMR with either measure of DNA damage was detected. No increase in DNA damage, despite lower antioxidant capacity at high SMR, indicates an upregulation in other defense mechanisms (e.g., damage repair and/or removal). Indeed, we observed a higher frequency of immature red blood cells in individuals with higher SMR, which indicates that highly metabolic individuals had increased erythrocyte turnover, a mechanism of damage removal. Such DNA protection through upregulated cellular turnover might explain the negligible senescence observed in some ectotherm taxa.


Assuntos
Metabolismo Basal/fisiologia , Colubridae/fisiologia , Dano ao DNA , Envelhecimento , Animais , Antioxidantes/análise , Colubridae/metabolismo , Eritrócitos/citologia , Eritrócitos/metabolismo , Feminino , Peróxido de Hidrogênio/metabolismo , Masculino , Estresse Oxidativo/fisiologia , Plasma/metabolismo , Espécies Reativas de Oxigênio/sangue
8.
Int J Nanomedicine ; 14: 9587-9602, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31824153

RESUMO

BACKGROUND: The functionalization of a nanoparticle surface with PEG (polyethylene glycol) is an approach most often used for extending nanomaterial circulation time, enhancing its delivery and retention in the target tissues, and decreasing systemic toxicity of nanocarriers and their cargos. However, because PEGylated nanomedicines were reported to induce immune response including production of anti-PEG antibodies, activation of the complement system as well as hypersensitivity reactions, hydrophilic polymers other than PEG are gaining interest as its replacement in nanomaterial functionalization. Here, we present the results of in vivo evaluation of polyelectrolyte nanocapsules with biodegradable, polyelectrolyte multilayer shells consisting of poly-l-lysine (PLL) and poly-l-glutamic (PGA) acid as a potential drug delivery system. We compared the effects of nanocapsules functionalized with two different "stealth" polymers as the external layer of tested nanocapsules was composed of PGA (PGA-terminated nanocapsules, NC-PGA) or the copolymer of poly-l-lysine and polyethylene glycol (PEG-terminated nanocapsules, NC-PEG). METHODS: Nanocapsules pharmacokinetics, biodistribution and routes of eliminations were analysed postmortem by fluorescence intensity measurement. Toxicity of intravenously injected nanocapsules was evaluated with analyses of blood morphology and biochemistry and by histological tissue analysis. DNA integrity was determined by comet assay, cytokine profiling was performed using flow cytometer and detection of antibodies specific to PEG was performed by ELISA assay. RESULTS: We found that NC-PGA and NC-PEG had similar pharmacokinetic and biodistribution profiles and both were eliminated by hepatobiliary and renal clearance. Biochemical and histopathological evaluation of long-term toxicity performed after a single as well as repeated intravenous injections of nanomaterials demonstrated that neither NC-PGA nor NC-PEG had any acute or chronic hemato-, hepato- or nephrotoxic effects. In contrast to NC-PGA, repeated administration of NC-PEG resulted in prolonged increased serum levels of a number of cytokines. CONCLUSION: Our results indicate that NC-PEG may cause undesirable activation of the immune system. Therefore, PGA compares favorably with PEG in equipping nanomaterials with stealth properties. Our research points to the importance of a thorough assessment of the potential influence of nanomaterials on the immune system.


Assuntos
Nanocápsulas/toxicidade , Polieletrólitos/farmacocinética , Polieletrólitos/toxicidade , Polietilenoglicóis/farmacocinética , Polietilenoglicóis/toxicidade , Ácido Poliglutâmico/farmacocinética , Ácido Poliglutâmico/toxicidade , Animais , Citocinas/sangue , Sistemas de Liberação de Medicamentos , Feminino , Fluorescência , Camundongos Endogâmicos BALB C , Nanocápsulas/química , Especificidade de Órgãos/efeitos dos fármacos , Polieletrólitos/química , Polietilenoglicóis/química , Ácido Poliglutâmico/química , Rodaminas/química , Distribuição Tecidual , Regulação para Cima/efeitos dos fármacos
9.
Int J Nanomedicine ; 14: 7249-7262, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31564877

RESUMO

BACKGROUND: Curcumin is a natural polyphenol with anti-inflammatory, chemopreventive and anticancer activity. However, its high hydrophobicity and poor bioavailability limit its medical application. The development of nanocarriers for curcumin delivery is an attractive approach to overcome its low bioavailability and fast metabolism in the liver. We synthesized a blood compatible alginate-curcumin conjugate, AA-Cur, which formed colloidally stable micelles of approximately 200 nm and, as previously shown, exerted strong cytotoxicity against mouse cancer cell lines. Here we analyze in vivo toxicity and antitumor activity of AA-Cur in two different mouse tumor models. METHOD: Potential toxicity of intravenously injected AA-Cur was evaluated by: i) analyses of blood parameters (morphology and biochemistry), ii) histology, iii) DNA integrity (comet assay), and iv) cytokine profiling (flow cytometry). Antitumor activity of AA-Cur was evaluated by measuring the growth of subcutaneously inoculated colon MC38-CEA- or orthotopically injected breast 4T1 tumor cells in control mice vs mice treated with AA-Cur. RESULTS: Injections of four doses of AA-Cur did not reveal any toxicity of the conjugate, thus indicating the safety of its use. AA-Cur elicited moderate anti-tumor activity toward colon MC38-CEA or breast 4T1 carcinomas. CONCLUSION: The tested conjugate of alginate and curcumin, AA-Cur, is non-toxic and safe, but exhibits limited anticancer activity.


Assuntos
Alginatos/farmacologia , Alginatos/toxicidade , Curcumina/farmacologia , Curcumina/toxicidade , Micelas , Testes de Toxicidade , Alginatos/uso terapêutico , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/toxicidade , Materiais Biocompatíveis/química , Células da Medula Óssea/metabolismo , Linhagem Celular Tumoral , Curcumina/administração & dosagem , Citocinas/sangue , Feminino , Humanos , Hidrodinâmica , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Especificidade de Órgãos
10.
Int J Nanomedicine ; 13: 5159-5172, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30233178

RESUMO

BACKGROUND: Toxicity of nanomaterials is one of the most important factors limiting their medical application. Evaluation of in vitro nanotoxicity allows for the identification and elimination of most of the toxic materials prior to animal testing. The current knowledge of the possible side effects of biodegradable nanomaterials, such as liposomes and polymeric organic nanoparticles, is limited. Previously, we developed a potential drug delivery system in the form of nanocapsules with polyelectrolyte, biodegradable shells consisting of poly-l-lysine and poly-l-glutamic acid (PGA), formed by the layer-by-layer adsorption technique. METHODS: Hemolysis assay, viability tests, flow cytometry analysis of vascular cell adhesion molecule-1 expression on endothelium, analysis of nitric oxide production, measurement of intracellular reactive oxygen species levels, detection of antioxidant enzyme activity, and analysis of DNA damage with comet assay were performed to study the in vitro toxicity of nanocapsules. RESULTS: In this work, we present the results of an in vitro analysis of toxicity of five-layer positively charged poly-l-lysine-terminated nanocapsules (NC5), six-layer negatively charged PGA-terminated nanocapsules (NC6) and five-layer PEGylated nanocapsules (NC5-PEG). PGA and polyethylene glycol (PEG) were used as two different "stealth" polymers. Of all the polyelectrolyte nanocapsules tested for blood compatibility, only cationic NC5 showed acute toxicity toward blood cells, expressed as hemolysis and aggregation. Neither NC6 nor NC5-PEG had proinflammatory activity evaluated through changes in the expression of NF-κB-dependent genes, iNOS and vascular cell adhesion molecule-1, induced oxidative stress, or promoted DNA damage in various cells. CONCLUSION: Our studies clearly indicate that PGA-coated (negatively charged) and PEGylated polyelectrolyte nanocapsules do not show in vitro toxicity, and their potential as a drug delivery system may be safely studied in vivo.


Assuntos
Nanocápsulas/toxicidade , Polieletrólitos/toxicidade , Testes de Toxicidade , Animais , Morte Celular/efeitos dos fármacos , Dano ao DNA , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Hemólise/efeitos dos fármacos , Células Hep G2 , Humanos , Inflamação/patologia , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Camundongos , Mutagênicos/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Tamanho da Partícula , Polieletrólitos/síntese química , Polietilenoglicóis/química
11.
Eur J Pharm Biopharm ; 128: 69-81, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29678734

RESUMO

Novel half-sandwich ruthenium(II) complexes with aminomethyl(diphenyl)phosphine derived from fluoroloquinolones (RuPCp, RuPSf, RuPLm, RuPNr) were being investigated as alternatives to well-established metal-based chemotherapeutics. All compounds were characterized by elemental analysis, selected spectroscopic methods (i.e., absorption and fluorescence spectroscopies, ESI-MS, NMR, circular dichroizm), X-ray diffractometry, ICP-MS, and electrochemical techniques. To overcome low solubility, serious side effects connected with systemic cytotoxicity of ruthenium complexes, and acquiring the resistance of cancer cells, polymeric nanoformulations based on Pluronic P-123 micelles loaded with selected Ru(II) complexes were prepared and characterized. Resulting micelles (RuPCp_M, RuPNr_M) enabled efficient drug accumulation inside human lung adenocarcinoma (A549 tumor cell line), proved by confocal microscopy and ICP-MS analysis, allowing cytotoxic action. Studied complexes exhibited promising cytotoxicity in vitro with IC50 values significantly lower than the reference drug - cisplatin. The fluorescence spectroscopic data (CT-DNA titration, in vitro cell staining) together with analysis of DNA fragmentation (pBR322 plasmid, comet assay) provided clear evidence for the interaction with DNA inducing apoptotic cell death.


Assuntos
Adenocarcinoma/tratamento farmacológico , Antineoplásicos/farmacologia , Portadores de Fármacos/química , Neoplasias Pulmonares/tratamento farmacológico , Fosfinas/farmacologia , Rutênio/farmacologia , Células A549 , Adenocarcinoma de Pulmão , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Apoptose/genética , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Complexos de Coordenação/administração & dosagem , Complexos de Coordenação/química , Fragmentação do DNA/efeitos dos fármacos , Fluoroquinolonas/química , Humanos , Concentração Inibidora 50 , Micelas , Nanopartículas/química , Fosfinas/química , Fosfinas/uso terapêutico , Poloxaleno/química , Rutênio/química , Rutênio/uso terapêutico
12.
Mech Ageing Dev ; 172: 96-106, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29103983

RESUMO

MCPIP1 (Monocyte Chemotactic Protein-1 Induced Protein) is an important regulator of inflammation and cell apoptosis, but its role in UVA-induced stress response in the epidermis has never been studied. We have found that moderate apoptosis-inducing dose of UVA (27J/cm2) increases the level of MCPIP1 expression in HaCaT cells and normal human keratinocytes (NHEK) within 6-9h after the treatment. MCPIP1 upregulation was dependent on the induction of p38, but not p53, as demonstrated by using p38 inhibitor SB203580 and p53 inducer RG7388, respectively. This increase was also blocked by antioxidants (α-tocopherol and ascorbic acid), suggesting the involvement of MCPIP1 in UVA-induced oxidative stress response. Si-RNA-mediated down-regulation of MCPIP1 expression in HaCaT cells resulted in increased sensitivity to UVA-induced DNA damage and apoptosis. This was accompanied by decreased phosphorylation of p53 and p38 in MCPIP1-silenced cells following UVA irradiation. The activation of p38 in response to low doses of ultraviolet radiation was postulated to be protective for p53-inactive cells. Therefore, MCPIP1 may favor the survival of p53-defective HaCaT cells by sustaining the activation of p38. This creates a loop of mutual positive regulation between p38 and MCPIP1 protein in HaCaT cells, providing the protection against the consequences of UVA irradiation.


Assuntos
Apoptose/efeitos da radiação , Regulação da Expressão Gênica/efeitos da radiação , Ribonucleases/biossíntese , Fatores de Transcrição/biossíntese , Proteína Supressora de Tumor p53/metabolismo , Raios Ultravioleta , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Linhagem Celular , Ativação Enzimática/efeitos da radiação , Humanos
13.
Toxicol In Vitro ; 42: 38-46, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28366708

RESUMO

ABT-737 belongs to a new class of anticancer agents named BH3 mimetics. ABT-737 competitively binds to surface hydrophobic grooves of anti-apoptotic proteins of Bcl-2 family, counteracting their protective effect. Resveratrol is a natural polyphenol that has been shown to inhibit the proliferation and/or induce apoptosis in a number of different types of cancer cells. The present study was designed to analyze the combined effects of ABT-737 and resveratrol on human acute lymphoblastic leukemia cells. The in vitro cytotoxic activity of these agents against MOLT-4 leukemia cells was determined using the Coulter electrical impedance method, comet assay, and flow cytometry, light microscopy and western blot techniques. The results are the first data showing that ABT-737 combined with resveratrol markedly decreased the cell viability, increased DNA damage, caused the cell cycle perturbation, and synergistically enhanced apoptosis in MOLT-4 cells, when compared to the data obtained after application of the single agent. Moreover, the simultaneous treatment of leukemia cells with ABT-737 and resveratrol resulted in a reduction in mitochondrial membrane potential, an increase of p53 protein level and up-regulation of the Bax/Bcl-2 ratio. The obtained data indicate that the combination of ABT-737 and resveratrol is a promising approach for acute lymphoblastic leukemia treatment that should be further explored.


Assuntos
Antineoplásicos/farmacologia , Compostos de Bifenilo/farmacologia , Nitrofenóis/farmacologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Estilbenos/farmacologia , Sulfonamidas/farmacologia , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Dano ao DNA , Sinergismo Farmacológico , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Piperazinas/farmacologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Resveratrol , Proteína Supressora de Tumor p53/metabolismo
14.
Nutr Cancer ; 67(7): 1170-82, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26364505

RESUMO

In this study we employed curcumin as a potent adjuvant agent in the treatment of human brain cancer involving selective EGFR kinase inhibitors: tyrphostins AG494 and AG1478. Aim of this work was to evaluate the effect of tested compounds on autocrine growth, cell cycle, and viability of LN229 cells, as well as to assess their proapoptotic and genotoxic properties. Our results showed that all tested compounds significantly inhibited autocrine growth of the investigated cell line in a dose dependent manner. However they are characterized by different kinetics of cell growth inhibition. Suppression of growth by the tyrphostins was completely or partially reversible in contrast to curcumin. Curcumin increased the cytostatic and/or cytotoxic potential of AG494 and AG1478. Tyrphostins did not have genotoxic properties regardless of concentration used, whereas curcumin cytotoxic and genotoxic properties were directly proportional to the concentration. Curcumin significantly increased tyrphostins cytotoxicity. The most promising of the obtained results may be the use of curcumin and tyrphostin AG494 in the treatment of cancer cells. Anticancer effect of the mixture was confirmed by increase of cytotoxic effect, decrease of viability, stimulation of apoptotic procesess, irreversible DNA damage, and decrease of the ROS in the culture of glioblastoma cells.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Curcumina/farmacologia , Quinazolinas/farmacologia , Tirfostinas/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Caspases/metabolismo , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Curcumina/administração & dosagem , Dano ao DNA/efeitos dos fármacos , Receptores ErbB/antagonistas & inibidores , Humanos , Inibidores de Proteínas Quinases/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Tirfostinas/administração & dosagem
15.
Expert Opin Investig Drugs ; 24(4): 585-94, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25361817

RESUMO

INTRODUCTION: Social anxiety disorder (SAD) is one of the most common psychiatric disorders, causing a reduction of in the quality of life by impairing functioning in social situations. The lifetime prevalence of SAD is estimated to be 12%. Selective serotonin reuptake inhibitors (SSRIs) and serotonin-norepinephrine reuptake inhibitors (SNRIs) are considered first-line drugs for SAD. However, new effective therapeutic options are still needed. Pregabalin is a novel anxiolytic, which seems to be a promising therapy for SAD. AREAS COVERED: This review presents the results of three randomized controlled trials (RCTs) comparing the efficacy and safety of pregabalin with placebo in patients with generalized SAD. The authors also discuss the long-term safety and tolerability data from an extension study. EXPERT OPINION: The results of the RCTs have demonstrated efficacy and safety with pregabalin at doses of 600 mg or 450 mg/d for treating generalized SAD. Thus, pregabalin may be an effective therapeutic option, especially for patients who cannot tolerate the adverse effects or who demonstrate a lack of efficacy with SSRIs or SNRIs. In addition to being an alternative therapy to SSRIs or SNRIs, it may also have value as an add-on therapy, either to augment pharmacotherapy or in addition to cognitive-behavioral therapy.


Assuntos
Ansiolíticos/uso terapêutico , Transtornos Fóbicos/tratamento farmacológico , Ácido gama-Aminobutírico/análogos & derivados , Ansiolíticos/efeitos adversos , Humanos , Transtornos Fóbicos/fisiopatologia , Pregabalina , Qualidade de Vida , Ensaios Clínicos Controlados Aleatórios como Assunto , Ácido gama-Aminobutírico/efeitos adversos , Ácido gama-Aminobutírico/uso terapêutico
16.
PLoS One ; 9(1): e84621, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24392146

RESUMO

Proton beam irradiation is a form of advanced radiotherapy providing superior distributions of a low LET radiation dose relative to that of photon therapy for the treatment of cancer. Even though this clinical treatment has been developing for several decades, the proton radiobiology critical to the optimization of proton radiotherapy is far from being understood. Proteomic changes were analyzed in human melanoma cells treated with a sublethal dose (3 Gy) of proton beam irradiation. The results were compared with untreated cells. Two-dimensional electrophoresis was performed with mass spectrometry to identify the proteins. At the dose of 3 Gy a minimal slowdown in proliferation rate was seen, as well as some DNA damage. After allowing time for damage repair, the proteomic analysis was performed. In total 17 protein levels were found to significantly (more than 1.5 times) change: 4 downregulated and 13 upregulated. Functionally, they represent four categories: (i) DNA repair and RNA regulation (VCP, MVP, STRAP, FAB-2, Lamine A/C, GAPDH), (ii) cell survival and stress response (STRAP, MCM7, Annexin 7, MVP, Caprin-1, PDCD6, VCP, HSP70), (iii) cell metabolism (TIM, GAPDH, VCP), and (iv) cytoskeleton and motility (Moesin, Actinin 4, FAB-2, Vimentin, Annexin 7, Lamine A/C, Lamine B). A substantial decrease (2.3 x) was seen in the level of vimentin, a marker of epithelial to mesenchymal transition and the metastatic properties of melanoma.


Assuntos
Melanoma/metabolismo , Proteoma , Proteômica , Prótons , Linhagem Celular Tumoral , Proliferação de Células/efeitos da radiação , Sobrevivência Celular/efeitos da radiação , Dano ao DNA/efeitos da radiação , Humanos , Melanoma/radioterapia , Proteômica/métodos , Estresse Fisiológico
17.
Int J Nanomedicine ; 8: 3963-75, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24204135

RESUMO

The platinum (Pt)-group elements (PGEs) represent a new kind of environmental pollutant and a new hazard for human health. Since their introduction as vehicle-exhaust catalysts, their emissions into the environment have grown considerably compared with their low natural concentration in the earth crust. PGE emissions from vehicle catalysts can be also in the form of nanometer-sized particles (Pt nanoparticles [PtNPs]). These elements, both in their metallic form or as ions solubilized in biological media, are now recognized as potent allergens and sensitizers. Human skin is always exposed to toxic particles; therefore, in the present study we addressed the question of whether polyvinylpyrrolidone-coated PtNPs may have any negative effects on skin cells, including predominantly epidermal keratinocytes. In this study, PtNPs of two sizes were used: 5.8 nm and 57 nm, in concentrations of 6.25, 12.5, and 25 µg/mL. Both types of NPs were protected with polyvinylpyrrolidone. Primary keratinocytes were treated for 24 and 48 hours, then cytotoxicity, genotoxicity, morphology, metabolic activity, and changes in the activation of signaling pathways were investigated in PtNP-treated cells. We found that PtNPs trigger toxic effects on primary keratinocytes, decreasing cell metabolism, but these changes have no effects on cell viability or migration. Moreover, smaller NPs exhibited more deleterious effect on DNA stability than the big ones. Analyzing activation of caspases, we found changes in activity of caspase 9 and caspase 3/7 triggered mainly by smaller NPs. Changes were not so significant in the case of larger nanoparticles. Importantly, we found that PtNPs have antibacterial properties, as is the case with silver NPs (AgNPs). In comparison to our previous study regarding the effects of AgNPs on cell biology, we found that PtNPs do not exhibit such deleterious effects on primary keratinocytes as AgNPs and that they also can be used as potential antibacterial agents, especially in the treatment of Escherichia coli, representing a group of Gram-negative species.


Assuntos
Queratinócitos/efeitos dos fármacos , Nanopartículas Metálicas , Platina , Antibacterianos/química , Antibacterianos/farmacologia , Antibacterianos/toxicidade , Apoptose/efeitos dos fármacos , Caspases/metabolismo , Ciclo Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Escherichia coli/efeitos dos fármacos , Humanos , Queratinócitos/citologia , Queratinócitos/ultraestrutura , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Viabilidade Microbiana/efeitos dos fármacos , Tamanho da Partícula , Platina/química , Platina/farmacologia , Platina/toxicidade , Transdução de Sinais/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos
18.
Biol Chem ; 394(1): 113-23, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23091270

RESUMO

Silver nanoparticles (AgNPs) have many biological applications in biomedicine, biotechnology and other life sciences. Depending on the size, shape and the type of carrier, AgNPs demonstrate different physical and chemical properties. AgNPs have strong antimicrobial, antiviral and antifungal activity, thus they are used extensively in a range of medical settings, particularly in wound dressings but also in cosmetics. This study was undertaken to examine the potential toxic effects of 15 nm polyvinylpyrrolidone-coated AgNPs on primary normal human epidermal keratinocytes (NHEK). Cells were treated with different concentrations of AgNPs and then cell viability, metabolic activity and other biological and biochemical aspects of keratinocytes functioning were studied. We observed that AgNPs decrease keratinocyte viability, metabolism and also proliferatory and migratory potential of these cells. Moreover, longer exposure resulted in activation of caspase 3/7 and DNA damage. Our studies show for the first time, that AgNPs may present possible danger for primary keratinocytes, concerning activation of genotoxic and cytotoxic processes depending on the concentration.


Assuntos
Queratinócitos/efeitos dos fármacos , Nanopartículas Metálicas/química , Prata/farmacologia , Caspase 3/metabolismo , Caspase 7/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Dano ao DNA , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Humanos , Queratinócitos/metabolismo , Prata/química , Relação Estrutura-Atividade
19.
Open Cardiovasc Med J ; 5: 179-87, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21912579

RESUMO

The main goal of the work reported here was to determine the degree of oxidative/alkali-labile DNA damages in peripheral blood as well as in the blood stasis from varicose vein of (chronic venous disorder) CVD patients. Moreover, determination of the impact of Detralex usage on the level of (oxidative) DNA damages in CVD patients was evaluated as well.The degree of oxidative DNA damages was studied in a group consisted of thirty patients with diagnosed chronic venous insufficiency (CVI) in the 2nd and 3rd degree, according to clinical state, etiology, anatomy and pathophysiology (CEAP), and qualified to surgical procedure. The control group consisted of normal volunteers (blood donors) qualified during standard examinations at Regional Centers of Blood Donation and Blood Therapy.The comet assay was used for determination of DNA damages.Analyses of the obtained results showed increase in the level of oxidative/alkali-labile DNA damages in lymphocytes originating from antebrachial blood of CVD patients as compared to the control group (Control) (p < 0.002; ANOVA). In addition, it was demonstrated that the usage of Detralex® resulted in decrease of the level of oxidative/alkali-labile DNA damages in CVD patients as compared to patients without Detralex® treatment (p < 0.001; ANOVA).Based on findings from the study, it may be hypothesized about occurrence of significant oxidative DNA damages as the consequence of strong oxidative stress in CVD. In addition, antioxidative effectiveness of Detralexu® was observed at the recommended dose, one tablet twice daily.

20.
Toxicol In Vitro ; 21(6): 1020-30, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17467952

RESUMO

Neutropenia is the primary dose-limiting effect of etoposide toxicity resulting in a decreased efficiency of cancer treatment. Hence, the protection of neutrophils has important clinical implications. We investigated whether quercetin, due to its antioxidant properties, is able to modulate the damaging activity of etoposide. DNA damage, evaluated by the comet assay, and apoptosis, determined by FACScan flow cytometry using Annexin/PI, increased with etoposide doses. The intracellular level of reactive oxygen species (ROS) was enhanced in resting neutrophils incubated with etoposide at concentrations up to 25 microM; above this concentration etoposide revealed antioxidant properties. Only in latex-activated neutrophils, i.e. with latex-stimulated respiratory burst was the ROS production inhibited, as assessed by the luminol amplified chemiluminescence. The characteristic electron spin resonance (ESR) signal of etoposide phenoxyl radical, which occurs in the presence of myeloperoxidase, H2O2 and etoposide, was quenched by quercetin in a dose-dependent manner (0.1-0.5 microM). Quercetin also inhibited DNA damage induced by etoposide and enhanced the inhibitory action of etoposide on the ROS formation in neutrophils. However, quercetin (1 microM) lowered early and late apoptosis/necrosis only when apoptosis was induced by 25 microM etoposide; at higher etoposide concentration apoptosis was enhanced. Summing up, antioxidant adjuvant therapy using quercetin can be beneficial in prolonging neutrophils' lifespan in peripheral blood only when etoposide plasma concentration is low.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Antioxidantes/farmacologia , Etoposídeo/farmacologia , Neutrófilos/efeitos dos fármacos , Quercetina/farmacologia , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Dano ao DNA/efeitos dos fármacos , Humanos , Peróxido de Hidrogênio/farmacologia , Neutrófilos/citologia , Neutrófilos/metabolismo , Peroxidase/farmacologia , Fenóis/metabolismo , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA