Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Elife ; 122024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38814682

RESUMO

Nonstructural protein 5 (Nsp5) is the main protease of SARS-CoV-2 that cleaves viral polyproteins into individual polypeptides necessary for viral replication. Here, we show that Nsp5 binds and cleaves human tRNA methyltransferase 1 (TRMT1), a host enzyme required for a prevalent post-transcriptional modification in tRNAs. Human cells infected with SARS-CoV-2 exhibit a decrease in TRMT1 protein levels and TRMT1-catalyzed tRNA modifications, consistent with TRMT1 cleavage and inactivation by Nsp5. Nsp5 cleaves TRMT1 at a specific position that matches the consensus sequence of SARS-CoV-2 polyprotein cleavage sites, and a single mutation within the sequence inhibits Nsp5-dependent proteolysis of TRMT1. The TRMT1 cleavage fragments exhibit altered RNA binding activity and are unable to rescue tRNA modification in TRMT1-deficient human cells. Compared to wild-type human cells, TRMT1-deficient human cells infected with SARS-CoV-2 exhibit reduced levels of intracellular viral RNA. These findings provide evidence that Nsp5-dependent cleavage of TRMT1 and perturbation of tRNA modification patterns contribute to the cellular pathogenesis of SARS-CoV-2 infection.


The virus responsible for COVID-19 infections is known as SARS-CoV-2. Like all viruses, SARS-CoV-2 carries instructions to make proteins and other molecules that play essential roles in enabling the virus to multiply and spread. Viruses are unable to make these molecules themselves, so they infect cells and trick them into making the molecules and assembling new virus particles on their behalf instead. When SARS-CoV2 infects cells, the host cells are reprogrammed to make chains containing several virus proteins that need to be severed from each other by a virus enzyme, known as Nsp5, to enable the proteins to work properly. Previous studies suggested that Nsp5 may also interact with a human protein known as TRMT1, which helps with the production of new proteins in cells. However, it was not clear how Nsp5 may bind to TRMT1 or how this interaction may affect the host cell. Zhang et al. used biochemical and molecular techniques in human cells to study how Nsp5 interacts with TRMT1. The experiments found that the virus enzyme cuts TRMT1 into fragments that are inactive and are subsequently destroyed by the cells. Moreover, Nsp5 cuts TRMT1 at exactly the same position corresponding to the cleavage sites of the viral proteins. Mutation of the sequence in TRMT1 renders Nsp5 ineffective at cutting the protein. SARS-CoV-2 infection caused TRMT1 levels to decrease inside the cells, in turn, leading to a drop in TRMT1 activity. The virus multiplied less in cells that were unable to produce TRMT1 compared to normal human cells, suggesting that the virus benefits from TRMT1 early during infection, before inactivating it at a later point. These findings suggest that one way SARS-CoV-2 causes disease is by decreasing the levels of a human protein that regulates protein production. In the future, the work of Zhang et al. may provide new markers for detecting infections of SARS-CoV-2 and other similar viruses and guide efforts to make more effective therapies against them.


Assuntos
Proteólise , RNA de Transferência , SARS-CoV-2 , tRNA Metiltransferases , Humanos , Proteases 3C de Coronavírus/metabolismo , Proteases 3C de Coronavírus/genética , COVID-19/virologia , COVID-19/metabolismo , Células HEK293 , RNA de Transferência/metabolismo , RNA de Transferência/genética , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , tRNA Metiltransferases/metabolismo , tRNA Metiltransferases/genética , Proteínas não Estruturais Virais/metabolismo , Proteínas não Estruturais Virais/genética , Replicação Viral
2.
bioRxiv ; 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-37502865

RESUMO

Nonstructural protein 5 (Nsp5) is the main protease of SARS-CoV-2 that cleaves viral polyproteins into individual polypeptides necessary for viral replication. Here, we show that Nsp5 binds and cleaves human tRNA methyltransferase 1 (TRMT1), a host enzyme required for a prevalent post-transcriptional modification in tRNAs. Human cells infected with SARS-CoV-2 exhibit a decrease in TRMT1 protein levels and TRMT1-catalyzed tRNA modifications, consistent with TRMT1 cleavage and inactivation by Nsp5. Nsp5 cleaves TRMT1 at a specific position that matches the consensus sequence of SARS-CoV-2 polyprotein cleavage sites, and a single mutation within the sequence inhibits Nsp5-dependent proteolysis of TRMT1. The TRMT1 cleavage fragments exhibit altered RNA binding activity and are unable to rescue tRNA modification in TRMT1-deficient human cells. Compared to wildtype human cells, TRMT1-deficient human cells infected with SARS-CoV-2 exhibit reduced levels of intracellular viral RNA. These findings provide evidence that Nsp5-dependent cleavage of TRMT1 and perturbation of tRNA modification patterns contribute to the cellular pathogenesis of SARS-CoV-2 infection.

3.
J Mol Cell Cardiol ; 174: 101-114, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36481511

RESUMO

Tissue ischemia results in intracellular pH (pHIN) acidification, and while metabolism is a known driver of acidic pHIN, less is known about how acidic pHIN regulates metabolism. Furthermore, acidic extracellular (pHEX) during early reperfusion confers cardioprotection, but how this impacts metabolism is unclear. Herein we employed LCMS based targeted metabolomics to analyze perfused mouse hearts exposed to: (i) control perfusion, (ii) hypoxia, (iii) ischemia, (iv) enforced acidic pHIN, (v) control reperfusion, and (vi) acidic pHEX (6.8) reperfusion. Surprisingly little overlap was seen between metabolic changes induced by hypoxia, ischemia, and acidic pHIN. Acidic pHIN elevated metabolites in the top half of glycolysis, and enhanced glutathione redox state. Meanwhile, acidic pHEX reperfusion induced substantial metabolic changes in addition to those seen in control reperfusion. This included elevated metabolites in the top half of glycolysis, prevention of purine nucleotide loss, and an enhancement in glutathione redox state. These data led to hypotheses regarding potential roles for methylglyoxal inhibiting the mitochondrial permeability transition pore, and for acidic inhibition of ecto-5'-nucleotidase, as potential mediators of cardioprotection by acidic pHEX reperfusion. However, neither hypothesis was supported by subsequent experiments. In contrast, analysis of cardiac effluents revealed complex effects of pHEX on metabolite transport, suggesting that mildly acidic pHEX may enhance succinate release during reperfusion. Overall, each intervention had distinct and overlapping metabolic effects, suggesting acidic pH is an independent metabolic regulator regardless which side of the cell membrane it is imposed.


Assuntos
Isquemia , Metaboloma , Camundongos , Animais , Reperfusão , Hipóxia , Concentração de Íons de Hidrogênio
4.
Bioorg Med Chem ; 27(13): 2972-2977, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31101492

RESUMO

Ribosomal frameshifting, a process whereby a translating ribosome is diverted from one reading frame to another on a contiguous mRNA, is an important regulatory mechanism in biology and an opportunity for therapeutic intervention in several human diseases. In HIV, ribosomal frameshifting controls the ratio of Gag and Gag-Pol, two polyproteins critical to the HIV life cycle. We have previously reported compounds able to selectively bind an RNA stemloop within the Gag-Pol mRNA; these compounds alter the production of Gag-Pol in a manner consistent with increased frameshifting. Importantly, they also display antiretroviral activity in human T-cells. Here, we describe new compounds with significantly reduced molecular weight, but with substantially maintained affinity and anti-HIV activity. These results suggest that development of more "ligand efficient" enhancers of ribosomal frameshifting is an achievable goal.


Assuntos
Mutação da Fase de Leitura/genética , HIV-1/genética , RNA Viral/metabolismo , Humanos , Ligantes
5.
Viruses ; 10(9)2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-30134546

RESUMO

As essential components of the host's innate immune response, NFκB and interferon signaling are critical determinants of the outcome of infection. Over the past 25 years, numerous Human Cytomegalovirus (HCMV) genes have been identified that antagonize or modulate the signaling of these pathways. Here we review the biology of the HCMV factors that alter NFκB and interferon signaling, including what is currently known about how these viral genes contribute to infection and persistence, as well as the major outstanding questions that remain.


Assuntos
Infecções por Citomegalovirus/imunologia , Citomegalovirus/crescimento & desenvolvimento , Citomegalovirus/imunologia , Imunidade Inata , Fatores Imunológicos/metabolismo , Interferons/metabolismo , Transdução de Sinais , Infecções por Citomegalovirus/virologia , Interações Hospedeiro-Patógeno , Humanos , Evasão da Resposta Imune
6.
ACS Macro Lett ; 5(2): 215-219, 2016 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35614681

RESUMO

Poly-[(R)-3-hydroxyalkanoate] biopolymers, or PHAs, are biocompatible and biodegradable polyesters that can be produced by diverse microbial strains. PHA polymers have found widespread uses in applications ranging from sustainable replacements of nonbiodegradable bulk-commodity plastics to biomaterials. However, further expansion into other markets and industries has generally been limited by the inability to chemically modify these polymers. Recently, our lab engineered E. coli LSBJ, a microbial strain able to produce PHA copolymers with controlled unit compositions from simple and accessible fatty acid feedstocks. We envisioned meaningfully broadening the application spectrum of these materials via production of chemically tractable PHA biopolymers containing "click"-ready chemical functionalities. With a myriad of applications in mind, in this study we demonstrate the synthesis and biopolymerization of a panel of ω-azido fatty acids and take the first exploratory steps toward demonstrating their conjugation via a strain-promoted azide-alkyne cycloaddition (SPAAC) reaction. The convenience of accessing these materials will open the door to new applications for functionalized PHA polymers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA