Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Death Dis ; 13(7): 659, 2022 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-35902579

RESUMO

Palmitic acid (PA) is significantly increased in the hypothalamus of mice, when fed chronically with a high-fat diet (HFD). PA impairs insulin signaling in hypothalamic neurons, by a mechanism dependent on autophagy, a process of lysosomal-mediated degradation of cytoplasmic material. In addition, previous work shows a crosstalk between autophagy and the primary cilium (hereafter cilium), an antenna-like structure on the cell surface that acts as a signaling platform for the cell. Ciliopathies, human diseases characterized by cilia dysfunction, manifest, type 2 diabetes, among other features, suggesting a role of the cilium in insulin signaling. Cilium depletion in hypothalamic pro-opiomelanocortin (POMC) neurons triggers obesity and insulin resistance in mice, the same phenotype as mice deficient in autophagy in POMC neurons. Here we investigated the effect of chronic consumption of HFD on cilia; and our results indicate that chronic feeding with HFD reduces the percentage of cilia in hypothalamic POMC neurons. This effect may be due to an increased amount of PA, as treatment with this saturated fatty acid in vitro reduces the percentage of ciliated cells and cilia length in hypothalamic neurons. Importantly, the same effect of cilia depletion was obtained following chemical and genetic inhibition of autophagy, indicating autophagy is required for ciliogenesis. We further demonstrate a role for the cilium in insulin sensitivity, as cilium loss in hypothalamic neuronal cells disrupts insulin signaling and insulin-dependent glucose uptake, an effect that correlates with the ciliary localization of the insulin receptor (IR). Consistently, increased percentage of ciliated hypothalamic neuronal cells promotes insulin signaling, even when cells are exposed to PA. Altogether, our results indicate that, in hypothalamic neurons, impairment of autophagy, either by PA exposure, chemical or genetic manipulation, cause cilia loss that impairs insulin sensitivity.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Animais , Autofagia , Cílios/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Hipotálamo/metabolismo , Insulina/metabolismo , Resistência à Insulina/genética , Camundongos , Neurônios/metabolismo , Ácido Palmítico/metabolismo , Ácido Palmítico/farmacologia , Pró-Opiomelanocortina/metabolismo , Pró-Opiomelanocortina/farmacologia
2.
Mol Cell Oncol ; 7(5): 1789418, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32944643

RESUMO

High-fat diet (HFD)-induced obesity is associated with increased cancer risk. Long-term feeding with HFD increases the concentration of the saturated fatty acid palmitic acid (PA) in the hypothalamus. We previously showed that, in hypothalamic neuronal cells, exposure to PA inhibits the autophagic flux, which is the whole autophagic process from the synthesis of the autophagosomes, up to their lysosomal fusion and degradation. However, the mechanism by which PA impairs autophagy in hypothalamic neurons remains unknown. Here, we show that PA-mediated reduction of the autophagic flux is not caused by lysosomal dysfunction, as PA treatment does not impair lysosomal pH or the activity of cathepsin B.Instead, PA dysregulates autophagy by reducing autophagosome-lysosome fusion, which correlates with the swelling of endolysosomal compartments that show areduction in their dynamics. Finally, because lysosomes undergo constant dynamic regulation by the small Rab7 GTPase, we investigated the effect of PA treatment on its activity. Interestingly, we found PA treatment altered the activity of Rab7. Altogether, these results unveil the cellular process by which PA exposure impairs the autophagic flux. As impaired autophagy in hypothalamic neurons promotes obesity, and balanced autophagy is required to inhibit malignant transformation, this could affect tumor initiation, progression, and/or response to therapy of obesity-related cancers.

3.
Vitam Horm ; 113: 217-238, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32138949

RESUMO

Vasopressin, also named antidiuretic hormone (ADH), arginine vasopressin (AVP) is the main hormone responsible for water maintenance in the body through the antidiuretic actions in the kidney. The posterior pituitary into the blood releases vasopressin formed in the hypothalamus. Hypothalamic osmotic neurons are responsible to initiate the cascade for AVP actions. The effects of AVP peptide includes activation of V2 receptors which stimulate the formation of cyclic AMP (cAMP) and phosphorylation of water channels aquaporin 2 (AQP2) in the collecting duct. AVP also has vasoconstrictor effects through V1a receptors in the vasculature, while V1b is found in the nervous system. V1a and b receptors increases intracellular Ca2+ while activation of V2 receptors of signaling pathways are related to cAMP-dependent phosphorylation in kidney collecting ducts acting in coordination to stimulate water and electrolyte homeostasis. AVP potentiate formation of intratubular angiotensin II (Ang II) through V2 receptors-dependent distal tubular renin formation, contributing to Na+ reabsorption. On the same way, Ang II receptors are able to potentiate the effects of V2-dependent stimulation of AQP2 abundance in the plasma membrane. The role of AVP in hypertension and renal disease has been demonstrated in pathological states with the involvement of V2 receptors in the progression of kidney damage in diabetes and also on the stimulation of intracellular pathways linked to the development of polycystic kidney.


Assuntos
Arginina Vasopressina/metabolismo , Hipertensão/fisiopatologia , Rim/metabolismo , Insuficiência Renal Crônica/fisiopatologia , Sistema Renina-Angiotensina/fisiologia , Humanos , Hipertensão/metabolismo , Insuficiência Renal Crônica/metabolismo
4.
Artigo em Inglês | MEDLINE | ID: mdl-30972025

RESUMO

Chronic consumption of high fat diets (HFDs), rich in saturated fatty acids (SatFAs) like palmitic acid (PA), is associated with the development of obesity and obesity-related metabolic diseases such as type II diabetes mellitus (T2DM). Previous studies indicate that PA accumulates in the hypothalamus following consumption of HFDs; in addition, HFDs consumption inhibits autophagy and reduces insulin sensitivity. Whether malfunction of autophagy specifically in hypothalamic neurons decreases insulin sensitivity remains unknown. PA does activate the Free Fatty Acid Receptor 1 (FFAR1), also known as G protein-coupled receptor 40 (GPR40); however, whether FFAR1 mediates the effects of PA on hypothalamic autophagy and insulin sensitivity has not been shown. Here, we demonstrate that exposure to PA inhibits the autophagic flux and reduces insulin sensitivity in a cellular model of hypothalamic neurons (N43/5 cells). Furthermore, we show that inhibition of autophagy and the autophagic flux reduces insulin sensitivity in hypothalamic neuronal cells. Interestingly, the inhibition of the autophagic flux, and the reduction in insulin sensitivity are prevented by pharmacological inhibition of FFAR1. Our findings show that dysregulation of autophagy reduces insulin sensitivity in hypothalamic neuronal cells. In addition, our data suggest FFAR1 mediates the ability of PA to inhibit autophagic flux and reduce insulin sensitivity in hypothalamic neuronal cells. These results reveal a novel cellular mechanism linking PA-rich diets to decreased insulin sensitivity in the hypothalamus and suggest that hypothalamic autophagy might represent a target for future T2DM therapies.

5.
Hypertension ; 71(4): 709-718, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29378857

RESUMO

Increasing evidence shows that antigen-presenting cells (APCs) are involved in the development of inflammation associated to hypertension. However, the potential role of APCs in the modulation of renal sodium transport has not been addressed. We hypothesized that APCs participate in renal sodium transport and, thus, development of high blood pressure in response to angiotensin II plus a high-salt diet. Using transgenic mice that allow the ablation of CD11chigh APCs, we studied renal sodium transport, the intrarenal renin-angiotensin system components, blood pressure, and cardiac/renal tissue damage in response to angiotensin II plus a high-salt diet. Strikingly, we found that APCs are required for the development of hypertension and that the ablation/restitution of APCs produces rapid changes in the blood pressure in mice with angiotensin II plus a high-salt diet. Moreover, APCs were necessary for the induction of intrarenal renin-angiotensin system components and affected the modulation of natriuresis and tubular sodium transporters. Consistent with the prevention of hypertension, the ablation of APCs also prevented cardiac hypertrophy and the induction of several indicators of renal and cardiac damage. Thus, our findings indicate a prominent role of APCs as modulators of blood pressure by mechanisms including renal sodium handling, with kinetics that suggest the involvement of tubular cell functions in addition to the modulation of inflammation and adaptive immune response.


Assuntos
Angiotensina II/metabolismo , Células Apresentadoras de Antígenos/imunologia , Pressão Sanguínea/imunologia , Antígeno CD11c/imunologia , Hipertensão , Cloreto de Sódio na Dieta/metabolismo , Animais , Modelos Animais de Doenças , Canais Epiteliais de Sódio/imunologia , Hipertensão/imunologia , Hipertensão/fisiopatologia , Hipertensão/prevenção & controle , Inflamação , Transporte de Íons/imunologia , Camundongos , Camundongos Transgênicos , Células Mieloides/imunologia
6.
Am J Physiol Renal Physiol ; 310(4): F284-93, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26608789

RESUMO

Renin is synthesized in the principal cells of the collecting duct (CD), and its production is increased via cAMP in angiotensin (ANG) II-dependent hypertension, despite suppression of juxtaglomerular (JG) renin. Vasopressin, one of the effector hormones of the renin-angiotensin system (RAS) via the type 2-receptor (V2R), activates the cAMP/PKA/cAMP response element-binding protein (CREB) pathway and aquaporin-2 expression in principal cells of the CD. Accordingly, we hypothesized that activation of V2R increases renin synthesis via PKA/CREB, independently of ANG II type 1 (AT1) receptor activation in CD cells. Desmopressin (DDAVP; 10(-6) M), a selective V2R agonist, increased renin mRNA (∼3-fold), prorenin (∼1.5-fold), and renin (∼2-fold) in cell lysates and cell culture media in the M-1 CD cell line. Cotreatment with DDAVP+H89 (PKA inhibitor) or CREB short hairpin (sh) RNA prevented this response. H89 also blunted DDAVP-induced CREB phosphorylation and nuclear localization. In 48-h water-deprived (WD) mice, prorenin-renin protein levels were increased in the renal inner medulla (∼1.4- and 1.8-fold). In WD mice treated with an ACE inhibitor plus AT1 receptor blockade, renin mRNA and prorenin protein levels were still higher than controls, while renin protein content was not changed. In M-1 cells, ANG II or DDAVP increased prorenin-renin protein levels; however, there were no further increases by combined treatment. These results indicate that in the CD the activation of the V2R stimulates renin synthesis via the PKA/CREB pathway independently of RAS, suggesting a critical role for vasopressin in the regulation of renin in the CD.


Assuntos
Túbulos Renais Coletores/efeitos dos fármacos , Túbulos Renais Coletores/metabolismo , Receptores de Vasopressinas/agonistas , Renina/biossíntese , Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Animais , Linhagem Celular , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Desamino Arginina Vasopressina/farmacologia , Técnicas de Silenciamento de Genes , Isoquinolinas/farmacologia , Medula Renal/efeitos dos fármacos , Medula Renal/metabolismo , Camundongos , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , RNA Interferente Pequeno/biossíntese , RNA Interferente Pequeno/genética , Receptor Tipo 1 de Angiotensina/metabolismo , Sistema Renina-Angiotensina/efeitos dos fármacos , Sulfonamidas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA