RESUMO
The introduction of pediatric-inspired regimens in adult Philadelphia-negative acute lymphoblastic leukemia (Ph-ALL) has significantly improved patients' prognosis. Within the Campus ALL network we analyzed the outcome of adult Ph-ALL patients treated according to the GIMEMA LAL1913 protocol outside the clinical trial, to compare the real-life data with the study results. We included 421 consecutive patients, with a median age of 42 years. The complete remission (CR) rate after the first course of chemotherapy was 94% and a measurable residual disease (MRD) negativity after the third course was achieved in 72% of patients. The 3-year overall survival (OS) and disease-free survival (DFS) were 67% and 57%, respectively. In a multivariate analysis, MRD positivity negatively influenced DFS. In a time-dependent analysis including only very high risk (VHR) and MRD positive cases, transplanted (HSCT) patients had a significantly better DFS than non-HSCT ones (P=0.0017). During induction, grade ≥2 pegaspargase-related hepato-toxicity was observed in 25% of patients (vs 12% in the GIMEMA LAL1913 trial, P=0.0003). In this large real-life cohort of Ph-ALL, we confirmed the very high CR rate and a superimposable OS and DFS compared to the GIMEMA LAL1913 clinical trial: CR rate after C1 94% vs 85%, P=0.0004; 3-year OS 67% vs 67%, P=0.94; 3-year DFS 57% vs 63%, P=0.17. HSCT confirms its important role in VHR and MRD-positive patients. The rate of pegaspargase-related toxicity was significantly higher in the real-life setting, emphasizing the importance of dose adjustment in the presence of risk factors to avoid excessive toxicity.
Assuntos
Anemia Aplástica , Vacinas contra COVID-19 , COVID-19 , Hemoglobinúria Paroxística , Humanos , Anemia Aplástica/complicações , Anemia Aplástica/terapia , COVID-19/prevenção & controle , Vacinas contra COVID-19/administração & dosagem , Hemoglobinúria Paroxística/complicações , Hemoglobinúria Paroxística/terapia , VacinaçãoRESUMO
Blinatumomab is the first bi-specific T-cell engager approved for relapsed or refractory B-cell precursor acute lymphoblastic leukaemia (B-ALL). Despite remarkable clinical results, the effects of blinatumomab on the host immune cell repertoire are not fully elucidated. In the present study, we characterized the peripheral blood (PB) and, for the first time, the bone marrow (BM) immune cell repertoire upon blinatumomab treatment. Twenty-nine patients with B-ALL received blinatumomab according to clinical practice. Deep multiparametric flow cytometry was used to characterize lymphoid subsets during the first treatment cycle. Blinatumomab induced a transient redistribution of PB effector T-cell subsets and Treg cells with a persistent increase in cytotoxic NK cells, which was associated with a transient upregulation of immune checkpoint receptors on PB CD4 and CD8 T-cell subpopulations and of CD39 expression on suppressive Treg cells. Of note, BM immune T-cell subsets showed a broader post-treatment subversion, including the modulation of markers associated with a T-cell-exhausted phenotype. In conclusion, our study indicates that blinatumomab differentially modulates the PB and BM immune cell repertoire, which may have relevant clinical implications in the therapeutic setting.
Assuntos
Anticorpos Biespecíficos , Antineoplásicos , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Medula Óssea/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamento farmacológico , Indução de Remissão , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Anticorpos Biespecíficos/farmacologia , Anticorpos Biespecíficos/uso terapêutico , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismoRESUMO
Although chemotherapy (CHT) exposure is an established cause of telomere attrition, determinants of telomere length (TL) dynamics after chemotherapy are poorly defined. In this study, we analyzed granulocyte telomere dynamics in 34 adult lymphoma patients undergoing first-line CHT. TL was measured by southern blot at each CHT cycle and after 1 year from CHT completion. Median age was 59 yrs (range 22-77). Median number of CHT cycles was 6 (range 3-6). The majority of patients (79%, n = 27) experienced TL shortening following CHT exposure. Mean telomere loss was 673 base pairs (bp) by cycle 6. Telomere shortening was an early event as 87% of the total telomere loss (mean 586 bp) occurred by the end of cycle 3, with no significant recovery after 1 year. A significant correlation was observed between baseline TL and total or fractional telomere loss (p < 0.001), with telomere shortening by cycle 3 observed predominantly in male patients with long telomeres at pre-treatment evaluation. Stratifying the analysis by gender and age only young women (<51 years of age) did not show significant telomere shortening following chemotherapy exposure. These findings indicate that gender and baseline TL are major determinants of TL dynamics following chemotherapy exposure in lymphoma patients.
Assuntos
Linfoma , Adulto , Humanos , Masculino , Feminino , Adulto Jovem , Pessoa de Meia-Idade , Idoso , Linfoma/tratamento farmacológico , Linfoma/genética , Encurtamento do Telômero , TelômeroRESUMO
Cytokine-induced killer lymphocytes (CIK) are a promising alternative to conventional donor lymphocyte infusion (DLI), following allogeneic haematopoietic cell transplantation (HCT), due to their intrinsic anti-tumour activity and reduced risk of graft-versus-host disease (GVHD). We explored the feasibility, anti-leukaemic activity and alloreactive risk of CIK generated from full-donor chimaeric (fc) patients and genetically redirected by a chimeric antigen receptor (CAR) (fcCAR.CIK) against the leukaemic target CD44v6. fcCAR.CIK were successfully ex-vivo expanded from leukaemic patients in complete remission after HCT confirming their intense preclinical anti-leukaemic activity without enhancing the alloreactivity across human leukocyte antigen (HLA) barriers. Our study provides translational bases to support clinical studies with fcCAR.CIK, a sort of biological bridge between the autologous and allogeneic sources, as alternative DLI following HCT.
Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Receptores de Antígenos Quiméricos , Humanos , Estudos de Viabilidade , Transplante Homólogo , Antígenos HLA , Imunoterapia Adotiva , Doença Enxerto-Hospedeiro/etiologia , Doença Enxerto-Hospedeiro/terapia , Antígenos de Histocompatibilidade Classe IIRESUMO
In recent years, human dihydroorotate dehydrogenase inhibitors have been associated with acute myelogenous leukemia as well as studied as potent host targeting antivirals. Starting from MEDS433 (IC50 1.2 nM), we kept improving the structure-activity relationship of this class of compounds characterized by 2-hydroxypyrazolo[1,5-a]pyridine scaffold. Using an in silico/crystallography supported design, we identified compound 4 (IC50 7.2 nM), characterized by the presence of a decorated aryloxyaryl moiety that replaced the biphenyl scaffold, with potent inhibition and pro-differentiating abilities on AML THP1 cells (EC50 74 nM), superior to those of brequinar (EC50 249 nM) and boosted when in combination with dipyridamole. Finally, compound 4 has an extremely low cytotoxicity on non-AML cells as well as MEDS433; it has shown a significant antileukemic activity in vivo in a xenograft mouse model of AML.
Assuntos
Leucemia Mieloide Aguda , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Animais , Humanos , Camundongos , Antivirais/farmacologia , Di-Hidro-Orotato Desidrogenase , Dipiridamol/uso terapêutico , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Leucemia Mieloide Aguda/tratamento farmacológico , Piridinas/farmacologia , Piridinas/uso terapêutico , Relação Estrutura-AtividadeRESUMO
The development of different generations of BCR-ABL1 tyrosine kinase inhibitors (TKIs) has led to the high overall survival of chronic myeloid leukemia (CML) patients. However, there are CML patients who show resistance to TKI therapy and are prone to progress to more advanced phases of the disease. So, implementing an alternative approach for targeting TKIs insensitive cells would be of the essence. Dihydroorotate dehydrogenase (DHODH) is an enzyme in the de novo pyrimidine biosynthesis pathway that is located in the inner membrane of mitochondria. Here, we found that CML cells are vulnerable to DHODH inhibition mediated by Meds433, a new and potent DHODH inhibitor recently developed by our group. Meds433 significantly activates the apoptotic pathway and leads to the reduction of amino acids and induction of huge metabolic stress in CML CD34+ cells. Altogether, our study shows that DHODH inhibition is a promising approach for targeting CML stem/progenitor cells and may help more patients discontinue the therapy.
Assuntos
Di-Hidro-Orotato Desidrogenase , Leucemia Mielogênica Crônica BCR-ABL Positiva , Resistencia a Medicamentos Antineoplásicos , Proteínas de Fusão bcr-abl/metabolismo , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Inibidores de Proteínas Quinases/farmacologiaRESUMO
Chronic myeloid leukemia stem cells (CML LSCs) are a rare and quiescent population that are resistant to tyrosine kinase inhibitors (TKI). When TKI therapy is discontinued in CML patients in deep, sustained and apparently stable molecular remission, these cells in approximately half of the cases restart to grow, resuming the leukemic process. The elimination of these TKI resistant leukemic stem cells is therefore an essential step in increasing the percentage of those patients who can reach a successful long-term treatment free remission (TFR). The understanding of the biology of the LSCs and the identification of the differences, phenotypic and/or metabolic, that could eventually allow them to be distinguished from the normal hematopoietic stem cells (HSCs) are therefore important steps in designing strategies to target LSCs in a rather selective way, sparing the normal counterparts.
RESUMO
The connection with acute myelogenous leukemia (AML) of dihydroorotate dehydrogenase (hDHODH), a key enzyme in pyrimidine biosynthesis, has attracted significant interest from pharma as a possible AML therapeutic target. We recently discovered compound 1, a potent hDHODH inhibitor (IC50 = 1.2 nM), able to induce myeloid differentiation in AML cell lines (THP1) in the low nM range (EC50 = 32.8 nM) superior to brequinar's phase I/II clinical trial (EC50 = 265 nM). Herein, we investigate the 1 drug-like properties observing good metabolic stability and no toxic profile when administered at doses of 10 and 25 mg/kg every 3 days for 5 weeks (Balb/c mice). Moreover, in order to identify a backup compound, we investigate the SAR of this class of compounds. Inside the series, 17 is characterized by higher potency in inducing myeloid differentiation (EC50 = 17.3 nM), strong proapoptotic properties (EC50 = 20.2 nM), and low cytotoxicity toward non-AML cells (EC30(Jurkat) > 100 µM).
Assuntos
Compostos de Bifenilo/química , Inibidores Enzimáticos/química , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/antagonistas & inibidores , Pirazóis/química , Piridinas/química , Animais , Apoptose/efeitos dos fármacos , Sítios de Ligação , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Di-Hidro-Orotato Desidrogenase , Desenho de Fármacos , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Feminino , Meia-Vida , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Microssomos Hepáticos/metabolismo , Simulação de Acoplamento Molecular , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Pirazóis/metabolismo , Pirazóis/farmacologia , Pirazóis/uso terapêutico , Piridinas/metabolismo , Piridinas/farmacologia , Piridinas/uso terapêutico , Ratos , Ratos Sprague-Dawley , Relação Estrutura-AtividadeRESUMO
CML is a hematopoietic stem-cell disorder emanating from breakpoint cluster region/Abelson murine leukemia 1 (BCR/ABL) translocation. Introduction of different TKIs revolutionized treatment outcome in CML patients, but CML LSCs seem insensitive to TKIs and are detectable in newly diagnosed and resistant CML patients and in patients who discontinued therapy. It has been reported that CML LSCs aberrantly express some CD markers such as CD26 that can be used for the diagnosis and for targeting. In this study, we confirmed the presence of CD26+ CML LSCs in newly diagnosed and resistant CML patients. To selectively target CML LSCs/progenitor cells that express CD26 and to spare normal HSCs/progenitor cells, we designed a venetoclax-loaded immunoliposome (IL-VX). Our results showed that by using this system we could selectively target CD26+ cells while sparing CD26- cells. The efficiency of venetoclax in targeting CML LSCs has been reported and our system demonstrated a higher potency in cell death induction in comparison to free venetoclax. Meanwhile, treatment of patient samples with IL-VX significantly reduced CD26+ cells in both stem cells and progenitor cells population. In conclusion, this approach showed that selective elimination of CD26+ CML LSCs/progenitor cells can be obtained in vitro, which might allow in vivo reduction of side effects and attainment of treatment-free, long-lasting remission in CML patients.
RESUMO
Combined direct antineoplastic activity and the long-lasting immunological effects of allogeneic hematopoietic cell transplant (HCT) can cure many hematological malignancies, but broad adoption requires non-relapse mortality (NRM) rates and graft-versus-host disease (GVHD) control. Recently, posttransplant cyclophosphamide (PTCy) given after a bone marrow transplant significantly reduced GVHD-incidence, while PTCy given with tacrolimus/mofetil mycophenolate (T/MMF) showed activity following allogeneic peripheral blood stem cell transplantation (alloPBSCT). Here, we report the experience of a larger cohort (85 consecutive patients) and expanded follow-up period (03/2011-12/2019) with high-risk hematological malignancies who received alloPBSCT from Human-Leukocyte-Antigens HLA-matched unrelated/related donors. GVHD-prophylaxis was PTCy 50 mg/kg (days+3 and +4) combined with T/MMF (day+5 forward). All patients stopped MMF on day+28 with day+110 = median tacrolimus discontinuation. Cumulative incidences were 12% for acute and 7% for chronic GVHD- and no GVHD-attributed deaths. For surviving patients, the 12, 24, and 36-month probabilities of being off immunosuppression were 92, 96, and 96%, respectively. After a 36-month median follow-up, NRM was 4%; median event-free survival (EFS) and overall survival (OS) had yet to occur. One- and two-year chronic GVHD-EFS results were 57% (95% CI, 46-68%) and 53% (95% CI, 45-61%), respectively, with limited late infections and long-term organ toxicities. Disease relapse caused the most treatment failures (38% at 2 years), but low transplant toxicity allowed many patients (14/37, 38%) to receive donor lymphocyte infusions as a post-relapse strategy. We confirmed that PTCy+T/MMF treatment effectively prevented acute and chronic GVHD and limited NRM to unprecedented low rates without loss of disease control efficacy in an expanded patient cohort. This trial is registered at U.S. National Library of Medicine as #NCT02300571.
RESUMO
Dihydroorotate Dehydrogenase (DHODH) is a key enzyme of the de novo pyrimidine biosynthesis, whose inhibition can induce differentiation and apoptosis in acute myeloid leukemia (AML). DHODH inhibitors had shown promising in vitro and in vivo activity on solid tumors, but their effectiveness was not confirmed in clinical trials, probably because cancer cells exploited the pyrimidine salvage pathway to survive. Here, we investigated the antileukemic activity of MEDS433, the DHODH inhibitor developed by our group, against AML. Learning from previous failures, we mimicked human conditions (performing experiments in the presence of physiological uridine plasma levels) and looked for synergic combinations to boost apoptosis, including classical antileukemic drugs and dipyridamole, a blocker of the pyrimidine salvage pathway. MEDS433 induced apoptosis in multiple AML cell lines, not only as a consequence of differentiation, but also directly. Its combination with antileukemic agents further increased the apoptotic rate, but when experiments were performed in the presence of physiological uridine concentrations, results were less impressive. Conversely, the combination of MEDS433 with dipyridamole induced metabolic lethality and differentiation in all AML cell lines; this extraordinary synergism was confirmed on AML primary cells with different genetic backgrounds and was unaffected by physiological uridine concentrations, predicting in human activity.
RESUMO
Host immune homeostasis as an independent prognostic indicator has been inadequately evaluated in aggressive non-Hodgkin's lymphomas (NHL). The present study addresses the prognostic significance in aggressive NHLs of the immunologic profile evaluated by pretreatment serum levels of immunoglobulins (Ig) and lymphocyte-monocyte ratio (LMR). In this series of 90 patients with aggressive lymphoma, the median level for IgG was 1,024mg/dl (range 436-2236), and for LMR was 2.2 (range 0.2-13.8). CR rate was higher with IgG levels ≥1,024mg/dL (91% vs 77% p=0.059). LMR ≤ 2.2 was associated with lower 1-year PFS (73% vs. 92%, p 0.016). Patients with good/very good R-IPI showed a reduced PFS if IgG or LMR was low, while patients with poor R-IPI did better if LMR or IgG levels were high. We combined both parameters with the R-IPI and produced a four-risk prognostic score showing one-year PFS of 95% (95% CI 68%-99%), 100% (95% CI 100%-100%), 73% (95% CI 52%-86%), and 59% (95% CI 31%-79%), in patients with zero, one, two and three risk factors, respectively. The results indicate for the first time the value of baseline serum Ig levels in the prognostic assessment of aggressive lymphoma.
RESUMO
Secondary acute myeloid leukemia (sAML) poorly responds to conventional treatments and allogeneic stem cell transplantation (HSCT). We evaluated toxicity and efficacy of CPX-351 in 71 elderly patients (median age 66 years) with sAML enrolled in the Italian Named (Compassionate) Use Program. Sixty days treatment-related mortality was 7% (5/71). The response rate at the end of treatment was: CR/CRi in 50/71 patients (70.4%), PR in 6/71 (8.5%), and NR in 10/71 (19.7%). After a median follow-up of 11 months relapse was observed in 10/50 patients (20%) and 12 months cumulative incidence of relapse (CIR) was 23.6%. Median duration of response was not reached. In competing risk analysis, CIR was reduced when HSCT was performed in first CR (12 months CIR of 5% and 37.4%, respectively, for patients receiving (=20) or not (=30) HSCT, p = 0.012). Twelve-months OS was 68.6% (median not reached). In landmark analysis, HSCT in CR1 was the only significant predictor of longer survival (12 months OS of 100 and 70.5%, for patients undergoing or not HSCT in CR1, respectively, p = 0.011). In conclusion, we extend to a real-life setting, the notion that CPX is an effective regimen for high risk AML patients and may improve the results of HSCT.
Assuntos
Citarabina/administração & dosagem , Daunorrubicina/administração & dosagem , Transplante de Células-Tronco Hematopoéticas , Leucemia Mieloide Aguda , Segunda Neoplasia Primária , Idoso , Aloenxertos , Ensaios de Uso Compassivo , Intervalo Livre de Doença , Feminino , Seguimentos , Humanos , Itália/epidemiologia , Leucemia Mieloide Aguda/mortalidade , Leucemia Mieloide Aguda/terapia , Masculino , Pessoa de Meia-Idade , Segunda Neoplasia Primária/mortalidade , Segunda Neoplasia Primária/terapia , Taxa de SobrevidaRESUMO
The immunophenotype is a key element to classify B-cell Non-Hodgkin Lymphomas (B-NHL); while it is routinely obtained through immunohistochemistry, the use of flow cytometry (FC) could bear several advantages. However, few FC laboratories can rely on a long-standing practical experience, and the literature in support is still limited; as a result, the use of FC is generally restricted to the analysis of lymphomas with bone marrow or peripheral blood involvement. In this work, we applied machine learning to our database of 1465 B-NHL samples from different sources, building four artificial predictive systems which could classify B-NHL in up to nine of the most common clinico-pathological entities. Our best model shows an overall accuracy of 92.68%, a mean sensitivity of 88.54% and a mean specificity of 98.77%. Beyond the clinical applicability, our models demonstrate (i) the strong discriminatory power of MIB1 and Bcl2, whose integration in the predictive model significantly increased the performance of the algorithm; (ii) the potential usefulness of some non-canonical markers in categorizing B-NHL; and (iii) that FC markers should not be described as strictly positive or negative according to fixed thresholds, but they rather correlate with different B-NHL depending on their level of expression.
RESUMO
Chronic myeloid leukemia (CML) is caused by BCRABL1 in a cell with the biological potential, intrinsic or acquired, to cause leukemia. This cell is commonly termed the CML leukemia stem cell (LSC). In humans a CML LSC is operationally-defined by ≥1 in vitro or in vivo assays of human leukemia cells transferred to immune-deficient mice. Results of these assays are sometimes discordant. There is also the unproved assumption that biological features of a CML LSC are stable. These considerations make accurate and precise identification of a CML LSC difficult or impossible. In this review, we consider biological features of CML LSCs defined by these assays. We also consider whether CML LSCs are susceptible to targeting by tyrosine kinase inhibitors (TKIs) and other drugs, and whether elimination of CML LSCs is needed to achieve therapy-free remission or cure CML.
Assuntos
Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Inibidores de Proteínas Quinases/uso terapêutico , Animais , HumanosRESUMO
Adoptive transfer of T lymphocytes (ACT) engineered with T-cell receptors (TCRs) of known antitumor specificity is an effective therapeutic strategy. However, a major constraint of ACT is the unpredictable interference of the endogenous TCR α and ß chains in pairing of the transduced TCR. This effect reduces the efficacy of the genetically modified primary T cells and carries the risk of generating novel TCR reactivities with unintended functional consequences. Here, we show a powerful approach to overcome these limitations. We engineered TCR α and ß chains with mutations encompassing a conserved motif (FXXXFXXS) required to stabilize the pairing of immunoglobulin heavy chain transmembrane domains. Molecular modeling supported the preferential pairing of mutated TCR and impaired pairing between mutated and wild-type TCRs. Expression of the mutated TCR was similar to wild type and conferred the expected specificity. Fluorescence resonance energy transfer analysis in mouse splenocytes transduced with mutated or wild-type TCRs showed a higher proximity of the former over the latter. Importantly, we show that mutated TCRs effectively outcompete endogenous TCRs and improve in vitro antitumor cytotoxicity when expressed in ex vivo isolated human T cells. This approach should contribute to improving current protocols of anticancer immunetherapy protocols.
Assuntos
Domínios Proteicos/genética , Domínios e Motivos de Interação entre Proteínas , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Transdução Genética , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Linhagem Celular , Expressão Gênica , Terapia Genética , Vetores Genéticos , Humanos , Imunoterapia Adotiva , Bicamadas Lipídicas/química , Camundongos , Modelos Moleculares , Mutagênese , Conformação Proteica , Receptores de Antígenos de Linfócitos T/química , Receptores de Antígenos de Linfócitos T alfa-beta/química , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Receptores de Antígenos Quiméricos/química , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Relação Estrutura-Atividade , Especificidade do Receptor de Antígeno de Linfócitos T/imunologiaRESUMO
Allogeneic hematopoietic cell transplantation (allo-HCT) is an adoptive immunotherapy strategy whose effectiveness relies on graft-versus-tumor (GVT) effect. We explored the feasibility of enhancing GVT after allo-HCT by peptide vaccination. Two myeloma patients were transplanted with a fludarabine-total body irradiation conditioning regimen and vaccinated with an HLA-A*0201-restricted modified survivin nonapeptide, plus montanide as adjuvant. At time of first vaccination, one patient had just attained serological remission despite documented relapse after transplant, while the other patient was in stable disease. Both patients had an immune response to vaccination: the frequency of survivin-specific CD8+ T cells increased between second and sixth vaccination and accounted for 0.5-0.8% of CD8+ cells; CD8+ cells were functional in ELISPOT assay. The first patient persists in complete remission with a follow-up of >5 years, while the second patient did not have a clinical response and vaccination was halted. We analyzed the T-cell receptor (TCR) repertoire of the first patient by spectratyping and found that vaccination did not affect the diversity of TCR profile, indicating that survivin clonotypes were probably spread in multiple TCR families. We generated a limited number (n = 4) of survivin-specific T cell clones: three were reactive only against the modified peptide, whereas one clone recognized also the naive peptide. Peptide vaccination is safe and applicable after allo-HCT and elicits an efficient antigen-specific T cell response without causing graft-versus-host disease.
Assuntos
Neoplasias Ósseas/terapia , Linfócitos T CD8-Positivos/imunologia , Doença Enxerto-Hospedeiro/prevenção & controle , Efeito Enxerto vs Tumor/imunologia , Transplante de Células-Tronco Hematopoéticas , Mieloma Múltiplo/terapia , Peptídeos/imunologia , Survivina/imunologia , Neoplasias Ósseas/secundário , Células Clonais , Citotoxicidade Imunológica , ELISPOT , Evolução Fatal , Feminino , Humanos , Imunidade Celular , Masculino , Mieloma Múltiplo/patologia , Recidiva Local de Neoplasia , Indução de Remissão , Transplante Homólogo , VacinaçãoRESUMO
Human dihydroorotate dehydrogenase ( hDHODH) catalyzes the rate-limiting step in de novo pyrimidine biosynthesis, the conversion of dihydroorotate to orotate. hDHODH has recently been found to be associated with acute myelogenous leukemia, a disease for which the standard of intensive care has not changed over decades. This work presents a novel class of hDHODH inhibitors, which are based on an unusual carboxylic group bioisostere 2-hydroxypyrazolo[1,5- a]pyridine, that has been designed starting from brequinar, one of the most potent hDHODH inhibitors. A combination of structure-based and ligand-based strategies produced compound 4, which shows brequinar-like hDHODH potency in vitro and is superior in terms of cytotoxicity and immunosuppression. Compound 4 also restores myeloid differentiation in leukemia cell lines at concentrations that are one log digit lower than those achieved in experiments with brequinar. This Article reports the design, synthesis, SAR, X-ray crystallography, biological assays, and physicochemical characterization of the new class of hDHODH inhibitors.