Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Cell ; 83(13): 2347-2356.e8, 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37311462

RESUMO

Oncogenic mutations in isocitrate dehydrogenases 1 and 2 (IDH1/2) produce 2-hydroxyglutarate (2HG), which inhibits dioxygenases that modulate chromatin dynamics. The effects of 2HG have been reported to sensitize IDH tumors to poly-(ADP-ribose) polymerase (PARP) inhibitors. However, unlike PARP-inhibitor-sensitive BRCA1/2 tumors, which exhibit impaired homologous recombination, IDH-mutant tumors have a silent mutational profile and lack signatures associated with impaired homologous recombination. Instead, 2HG-producing IDH mutations lead to a heterochromatin-dependent slowing of DNA replication accompanied by increased replication stress and DNA double-strand breaks. This replicative stress manifests as replication fork slowing, but the breaks are repaired without a significant increase in mutation burden. Faithful resolution of replicative stress in IDH-mutant cells is dependent on poly-(ADP-ribosylation). Treatment with PARP inhibitors increases DNA replication but results in incomplete DNA repair. These findings demonstrate a role for PARP in the replication of heterochromatin and further validate PARP as a therapeutic target in IDH-mutant tumors.


Assuntos
Proteína BRCA1 , Neoplasias , Humanos , Proteína BRCA1/genética , Heterocromatina/genética , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Proteína BRCA2/genética , Recombinação Homóloga/genética , Neoplasias/tratamento farmacológico , Neoplasias/genética , Mutação , Isocitrato Desidrogenase/genética
2.
Cancer Res ; 83(10): 1596-1610, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36912618

RESUMO

Cancer-associated fibroblasts (CAF) are a major cell type in the stroma of solid tumors and can exert both tumor-promoting and tumor-restraining functions. CAF heterogeneity is frequently observed in pancreatic ductal adenocarcinoma (PDAC), a tumor characterized by a dense and hypoxic stroma that features myofibroblastic CAFs (myCAF) and inflammatory CAFs (iCAF) that are thought to have opposing roles in tumor progression. While CAF heterogeneity can be driven in part by tumor cell-produced cytokines, other determinants shaping CAF identity and function are largely unknown. In vivo, we found that iCAFs displayed a hypoxic gene expression and biochemical profile and were enriched in hypoxic regions of PDAC tumors, while myCAFs were excluded from these regions. Hypoxia led fibroblasts to acquire an inflammatory gene expression signature and synergized with cancer cell-derived cytokines to promote an iCAF phenotype in a HIF1α-dependent fashion. Furthermore, HIF1α stabilization was sufficient to induce an iCAF phenotype in stromal cells introduced into PDAC organoid cocultures and to promote PDAC tumor growth. These findings indicate hypoxia-induced HIF1α as a regulator of CAF heterogeneity and promoter of tumor progression in PDAC. SIGNIFICANCE: Hypoxia in the tumor microenvironment of pancreatic cancer potentiates the cytokine-induced inflammatory CAF phenotype and promotes tumor growth. See related commentary by Fuentes and Taniguchi, p. 1560.


Assuntos
Fibroblastos Associados a Câncer , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Citocinas/metabolismo , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/patologia , Fibroblastos/metabolismo , Fibroblastos Associados a Câncer/metabolismo , Fenótipo , Microambiente Tumoral , Neoplasias Pancreáticas
3.
Nat Metab ; 3(11): 1484-1499, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34764457

RESUMO

The aberrant production of collagen by fibroblasts is a hallmark of many solid tumours and can influence cancer progression. How the mesenchymal cells in the tumour microenvironment maintain their production of extracellular matrix proteins as the vascular delivery of glutamine and glucose becomes compromised remains unclear. Here we show that pyruvate carboxylase (PC)-mediated anaplerosis in tumour-associated fibroblasts contributes to tumour fibrosis and growth. Using cultured mesenchymal and cancer cells, as well as mouse allograft models, we provide evidence that extracellular lactate can be utilized by fibroblasts to maintain tricarboxylic acid (TCA) cycle anaplerosis and non-essential amino acid biosynthesis through PC activity. Furthermore, we show that fibroblast PC is required for collagen production in the tumour microenvironment. These results establish TCA cycle anaplerosis as a determinant of extracellular matrix collagen production, and identify PC as a potential target to inhibit tumour desmoplasia.


Assuntos
Fibroblastos Associados a Câncer/metabolismo , Colágeno/biossíntese , Neoplasias/etiologia , Neoplasias/metabolismo , Piruvato Carboxilase/metabolismo , Microambiente Tumoral , Animais , Fibroblastos Associados a Câncer/patologia , Linhagem Celular , Ciclo do Ácido Cítrico , Suscetibilidade a Doenças , Ativação Enzimática/efeitos dos fármacos , Fibrose , Regulação Enzimológica da Expressão Gênica , Glutamina/metabolismo , Humanos , Ácido Láctico/metabolismo , Camundongos , Neoplasias/patologia , Biossíntese de Proteínas , Piruvato Carboxilase/genética , Fator de Crescimento Transformador beta/metabolismo , Microambiente Tumoral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA