Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 4733, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-36096993

RESUMO

Memories are stored in the brain as cellular ensembles activated during learning and reactivated during retrieval. Using the Tet-tag system in mice, we label dorsal dentate gyrus neurons activated by positive, neutral or negative experiences with channelrhodopsin-2. Following fear-conditioning, these cells are artificially reactivated during fear memory recall. Optical stimulation of a competing positive memory is sufficient to update the memory during reconsolidation, thereby reducing conditioned fear acutely and enduringly. Moreover, mice demonstrate operant responding for reactivation of a positive memory, confirming its rewarding properties. These results show that interference from a rewarding experience can counteract negative affective states. While memory-updating, induced by memory reactivation, involves a relatively small set of neurons, we also find that activating a large population of randomly labeled dorsal dentate gyrus neurons is effective in promoting reconsolidation. Importantly, memory-updating is specific to the fear memory. These findings implicate the dorsal dentate gyrus as a potential therapeutic node for modulating memories to suppress fear.


Assuntos
Medo , Hipocampo , Animais , Medo/fisiologia , Hipocampo/fisiologia , Aprendizagem , Memória/fisiologia , Camundongos , Neurônios/fisiologia
2.
Hippocampus ; 32(10): 707-715, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35950345

RESUMO

The compounding symptomatology of alcohol use disorder (AUD) and co-occurring mental health disorders gives rise to interactions of maladaptive neurobiological processes, the etiology of which are elusive. Here, we devised an optogenetic strategy aimed at rescuing maladaptive fear processing in male c57BL/6 mice that underwent a chronic ethanol administration and forced abstinence paradigm. In the first experiment, we confirmed that fear acquisition and maladaptive contextual generalization was potentiated in ethanol-exposed mice during fear conditioning and exposure to a novel environment, respectively. In the second experiment, using an activity-dependent tet-tag system, we labeled the neural ensemble selectively activated by contextual fear conditioning in the dorsal hippocampus with an inhibitory opsin to attenuate behavioral dysfunctions resulting from ethanol exposure. We found that acute optogenetic perturbations during exposure to a novel environment suppressed maladaptive generalization in ethanol-exposed mice. These results provide further evidence for a crucial link between ethanol exposure and impaired fear memory processing by providing cellular and behavioral insights into the neural circuitry underlying AUD and maladaptive fear processing.


Assuntos
Etanol , Medo , Animais , Etanol/toxicidade , Hipocampo , Masculino , Transtornos da Memória , Camundongos , Camundongos Endogâmicos C57BL , Opsinas
3.
Neuropsychopharmacology ; 47(11): 1992-2001, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35941286

RESUMO

The formation and extinction of fear memories represent two forms of learning that each engage the hippocampus and amygdala. How cell populations in these areas contribute to fear relapse, however, remains unclear. Here, we demonstrate that, in male mice, cells active during fear conditioning in the dentate gyrus of hippocampus exhibit decreased activity during extinction and are re-engaged after contextual fear relapse. In vivo calcium imaging reveals that relapse drives population dynamics in the basolateral amygdala to revert to a network state similar to the state present during fear conditioning. Finally, we find that optogenetic inactivation of neuronal ensembles active during fear conditioning in either the hippocampus or amygdala is sufficient to disrupt fear expression after relapse, while optogenetic stimulation of these same ensembles after extinction is insufficient to artificially mimic fear relapse. These results suggest that fear relapse triggers a partial re-emergence of the original fear memory representation, providing new insight into the neural substrates of fear relapse.


Assuntos
Cálcio , Condicionamento Clássico , Tonsila do Cerebelo/diagnóstico por imagem , Tonsila do Cerebelo/fisiologia , Animais , Condicionamento Clássico/fisiologia , Extinção Psicológica/fisiologia , Medo/fisiologia , Hipocampo/fisiologia , Masculino , Camundongos , Recidiva
4.
Hippocampus ; 31(1): 3-10, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32946184

RESUMO

Alcohol withdrawal directly impacts the brain's stress and memory systems, which may underlie individual susceptibility to persistent drug and alcohol-seeking behaviors. Numerous studies demonstrate that forced alcohol abstinence, which may lead to withdrawal, can impair fear-related memory processes in rodents such as extinction learning; however, the underlying neural circuits mediating these impairments remain elusive. Here, we tested an optogenetic strategy aimed at mitigating fear extinction retrieval impairments in male c57BL/6 mice following exposure to alcohol (i.e., ethanol) and forced abstinence. In the first experiment, extensive behavioral extinction training in a fear-conditioned context was impaired in ethanol-exposed mice compared to controls. In the second experiment, neuronal ensembles processing a contextual fear memory in the dorsal hippocampus were tagged and optogenetically reactivated repeatedly in a distinct context in ethanol-exposed and control mice. Chronic activation of these cells resulted in a context-specific, extinction-like reduction in fear responses in both control and ethanol-exposed mice. These findings suggest that while ethanol can impair the retrieval an extinction memory, optogenetic manipulation of a fear engram is sufficient to induce an extinction-like reduction in fear responses.


Assuntos
Alcoolismo , Síndrome de Abstinência a Substâncias , Animais , Etanol/toxicidade , Extinção Psicológica , Medo , Masculino , Camundongos , Camundongos Endogâmicos C57BL
5.
Neurobiol Learn Mem ; 176: 107321, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33164892

RESUMO

The hippocampus processes both spatial-temporal information and emotionally salient experiences. To test the functional properties of discrete sets of cells in the dorsal dentate gyrus (dDG), we examined whether chronic optogenetic reactivation of these ensembles was sufficient to modulate social behaviors in mice. We found that chronic reactivation of discrete dDG cell populations in male mice largely did not affect social behaviors in an experience-dependent manner. However, we found that social behavior in a female exposure task was increased following chronic optogenetic stimulation when compared to pre-stimulation levels, suggesting that the protocol led to increased social behavior, although alternative explanations are discussed. Furthermore, multi-region analysis of neural activity did not yield detectable differences in immediate-early gene expression or neurogenesis following chronic optogenetic stimulation. Together, these results suggest that the effects of chronic optogenetic stimulation in the dDG on social behaviors are independent of the contextual experience processed by each cellular ensemble.


Assuntos
Giro Denteado/fisiologia , Memória/fisiologia , Optogenética , Comportamento Social , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurogênese/fisiologia
6.
Curr Biol ; 29(11): 1885-1894.e4, 2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-31130452

RESUMO

Emerging evidence indicates that distinct hippocampal domains differentially drive cognition and emotion [1, 2]; dorsal regions encode spatial, temporal, and contextual information [3-5], whereas ventral regions regulate stress responses [6], anxiety-related behaviors [7, 8], and emotional states [8-10]. Although previous studies demonstrate that optically manipulating cells in the dorsal hippocampus can drive the behavioral expression of positive and negative memories, it is unknown whether changes in cellular activity in the ventral hippocampus can drive such behaviors [11-14]. Investigating the extent to which distinct hippocampal memories across the longitudinal axis modulate behavior could aid in the understanding of stress-related psychiatric disorders known to affect emotion, memory, and cognition [15]. Here, we asked whether tagging and stimulating cells along the dorsoventral axis of the hippocampus could acutely, chronically, and differentially promote context-specific behaviors. Acute reactivation of both dorsal and ventral hippocampus cells that were previously active during memory formation drove freezing behavior, place avoidance, and place preference. Moreover, chronic stimulation of dorsal or ventral hippocampal fear memories produced a context-specific reduction or enhancement of fear responses, respectively, thus demonstrating bi-directional and context-specific modulation of memories along the longitudinal axis of the hippocampus. Fear memory suppression was associated with a reduction in hippocampal cells active during retrieval, while fear memory enhancement was associated with an increase in basolateral amygdala activity. Together, our data demonstrate that discrete sets of cells throughout the hippocampus provide key nodes sufficient to bi-directionally reprogram both the neural and behavioral expression of memory.


Assuntos
Hipocampo/fisiologia , Memória/fisiologia , Neurônios/fisiologia , Animais , Condicionamento Clássico , Medo/fisiologia , Masculino , Rememoração Mental/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Distribuição Aleatória
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA