Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cells ; 11(6)2022 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-35326503

RESUMO

RNA-binding proteins (RBPs) play important roles in modulating miRNA-mediated mRNA target repression. Argonaute2 (Ago2) is an essential component of the RNA-induced silencing complex (RISC) that plays a central role in silencing mechanisms via small non-coding RNA molecules known as siRNAs and miRNAs. Small RNAs loaded into Argonaute proteins catalyze endoribonucleolytic cleavage of target RNAs or recruit factors responsible for translational silencing and mRNA target destabilization. In previous studies we have shown that KCC2, a neuronal Cl (-) extruding K (+) Cl (-) co-transporter 2, is regulated by miR-92 in neuronal cells. Searching for Ago2 partners by immunoprecipitation and LC-MS/MS analysis, we isolated among other proteins the Serpine mRNA binding protein 1 (SERBP1) from SH-SY5Y neuroblastoma cells. Exploring the role of SERBP1 in miRNA-mediated gene silencing in SH-SY5Y cells and primary hippocampal neurons, we demonstrated that SERBP1 silencing regulates KCC2 expression through the 3' untranslated region (UTR). In addition, we found that SERBP1 as well as Ago2/miR-92 complex bind to KCC2 3'UTR. Finally, we demonstrated the attenuation of miR-92-mediated repression of KCC2 3'UTR by SERBP1 silencing. These findings advance our knowledge regarding the miR-92-mediated modulation of KCC2 translation in neuronal cells and highlight SERBP1 as a key component of this gene regulation.


Assuntos
MicroRNAs , Simportadores , Regiões 3' não Traduzidas , Cromatografia Líquida , MicroRNAs/genética , MicroRNAs/metabolismo , Neurônios/metabolismo , RNA Mensageiro/genética , Complexo de Inativação Induzido por RNA/genética , Simportadores/genética , Espectrometria de Massas em Tandem
2.
Cells ; 10(11)2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34831459

RESUMO

Neuronal apoptosis and survival are regulated at the transcriptional level. To identify key genes and upstream regulators primarily responsible for these processes, we overlayed the temporal transcriptome of cerebellar granule neurons following induction of apoptosis and their rescue by three different neurotrophic factors. We identified a core set of 175 genes showing opposite expression trends at the intersection of apoptosis and survival. Their functional annotations and expression signatures significantly correlated to neurological, psychiatric and oncological disorders. Transcription regulatory network analysis revealed the action of nine upstream transcription factors, converging pro-apoptosis and pro-survival-inducing signals in a highly interconnected functionally and temporally ordered manner. Five of these transcription factors are potential drug targets. Transcriptome-based computational drug repurposing produced a list of drug candidates that may revert the apoptotic core set signature. Besides elucidating early drivers of neuronal apoptosis and survival, our systems biology-based perspective paves the way to innovative pharmacology focused on upstream targets and regulatory networks.


Assuntos
Apoptose , Linhagem da Célula , Neurônios/citologia , Transcrição Gênica , Animais , Apoptose/genética , Sobrevivência Celular/genética , Análise por Conglomerados , Reposicionamento de Medicamentos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Transtornos Mentais/genética , Anotação de Sequência Molecular , Doenças do Sistema Nervoso/genética , Neurônios/metabolismo , Mapas de Interação de Proteínas/genética , Ratos Wistar , Fatores de Tempo , Fatores de Transcrição/metabolismo
3.
Cells ; 9(12)2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-33321704

RESUMO

Neurotrophin nerve growth factor (NGF) has been demonstrated to upregulate the gene expression of bradykinin receptor 2 (B2R) on sensory neurons, thus facilitating nociceptive signals. The aim of the present study is to investigate the involvement of B2R in the NGF mechanism of action in nonsensory neurons in vitro by using rat mixed cortical primary cultures (CNs) and mouse hippocampal slices, and in vivo in Alzheimer's disease (AD) transgenic mice (5xFAD) chronically treated with NGF. A significant NGF-mediated upregulation of B2R was demonstrated by microarray, Western blot, and immunofluorescence analysis in CNs, indicating microglial cells as the target of this modulation. The B2R involvement in the NGF mechanism of action was also demonstrated by using a selective B2R antagonist which was able to reverse the neuroprotective effect of NGF in CNs, as revealed by viability assay, and the NGF-induced long-term potentiation (LTP) in hippocampal slices. To confirm in vitro observations, B2R upregulation was observed in 5xFAD mouse brain following chronic intranasal NGF treatment. This study demonstrates for the first time that B2R is a key element in the neuroprotective activity and synaptic plasticity mediated by NGF in brain cells.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Fator de Crescimento Neural/administração & dosagem , Fármacos Neuroprotetores/administração & dosagem , Receptor B2 da Bradicinina/genética , Receptor B2 da Bradicinina/metabolismo , Administração Intranasal , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Animais , Sobrevivência Celular , Células Cultivadas , Córtex Cerebral/citologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Camundongos , Camundongos Transgênicos , Microglia/citologia , Microglia/efeitos dos fármacos , Microglia/metabolismo , Fator de Crescimento Neural/farmacologia , Plasticidade Neuronal/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Cultura Primária de Células , Ratos , Regulação para Cima
4.
Biomolecules ; 10(2)2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-32024191

RESUMO

In the last decade, Nerve Growth Factor (NGF)-based clinical approaches have lacked specific and efficient Tyrosine Kinase A (TrkA) agonists for brain delivery. Nowadays, the characterization of novel small peptidomimetic is taking centre stage in preclinical studies, in order to overcome the main size-related limitation in brain delivery of NGF holoprotein for Central Nervous System (CNS) pathologies. Here we investigated the NGF mimetic properties of the human NGF 1-14 sequence (hNGF1-14) and its derivatives, by resorting to primary cholinergic and dorsal root ganglia (DRG) neurons. Briefly, we observed that: 1) hNGF1-14 peptides engage the NGF pathway through TrkA phosphorylation at tyrosine 490 (Y490), and activation of ShcC/PI3K and Plc-γ/MAPK signalling, promoting AKT-dependent survival and CREB-driven neuronal activity, as seen by levels of the immediate early gene c-Fos, of the cholinergic marker Choline Acetyltransferase (ChAT), and of Brain Derived Neurotrophic Factor (BDNF); 2) their NGF mimetic activity is lost upon selective TrkA inhibition by means of GW441756; 3) hNGF1-14 peptides are able to sustain DRG survival and differentiation in absence of NGF. Furthermore, the acetylated derivative Ac-hNGF1-14 demonstrated an optimal NGF mimetic activity in both neuronal paradigms and an electrophysiological profile similar to NGF in cholinergic neurons. Cumulatively, the findings here reported pinpoint the hNGF1-14 peptide, and in particular its acetylated derivative, as novel, specific and low molecular weight TrkA specific agonists in both CNS and PNS primary neurons.


Assuntos
Neurônios Colinérgicos/metabolismo , Gânglios Espinais/metabolismo , Fator de Crescimento Neural/química , Receptor trkA/agonistas , Receptor trkA/metabolismo , Proteína 3 de Transformação que Contém Domínio 2 de Homologia de Src/metabolismo , Animais , Bioensaio , Diferenciação Celular , Sobrevivência Celular , Células Cultivadas , Humanos , Peptídeos/química , Fosforilação , Ratos , Transdução de Sinais , Tirosina/química
6.
Mol Neurobiol ; 56(1): 535-552, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29736736

RESUMO

Basal forebrain cholinergic neurons (BFCN) are key modulators of learning and memory and are high energy-demanding neurons. Impaired neuronal metabolism and reduced insulin signaling, known as insulin resistance, has been reported in the early phase of Alzheimer's disease (AD), which has been suggested to be "Type 3 Diabetes." We hypothesized that BFCN may develop insulin resistance and their consequent failure represents one of the earliest event in AD. We found that a condition reminiscent of insulin resistance occurs in the medial septum of 3 months old 3×Tg-AD mice, reported to develop typical AD histopathology and cognitive deficits in adulthood. Further, we obtained insulin resistant BFCN by culturing them with high insulin concentrations. By means of these paradigms, we observed that nerve growth factor (NGF) reduces insulin resistance in vitro and in vivo. NGF activates the insulin receptor substrate 1 (IRS1) and rescues c-Fos expression and glucose metabolism. This effect involves binding of activated IRS1 to the NGF receptor TrkA, and is lost in presence of the specific IRS inhibitor NT157. Overall, our findings indicate that, in a well-established animal model of AD, the medial septum develops insulin resistance several months before it is detectable in the neocortex and hippocampus. Remarkably, NGF counteracts molecular alterations downstream of insulin-resistant receptor and its nasal administration restores insulin signaling in 3×Tg-AD mice by TrkA/IRS1 activation. The cross-talk between NGF and insulin pathways downstream the insulin receptor suggests novel potential therapeutic targets to slow cognitive decline in AD and diabetes-related brain insulin resistance.


Assuntos
Doença de Alzheimer/metabolismo , Proteínas Substratos do Receptor de Insulina/metabolismo , Resistência à Insulina/fisiologia , Insulina/farmacologia , Fator de Crescimento Neural/farmacologia , Núcleos Septais/metabolismo , Doença de Alzheimer/genética , Animais , Neurônios Colinérgicos/efeitos dos fármacos , Neurônios Colinérgicos/metabolismo , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos , Fosforilação/efeitos dos fármacos , Ratos , Ratos Wistar , Receptor de Insulina/metabolismo , Núcleos Septais/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
7.
J Cell Physiol ; 233(10): 7178-7187, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29741791

RESUMO

Nerve growth factor, the prototype of a family of neurotrophins, elicits differentiation and survival of peripheral and central neuronal cells. Although its neural mechanisms have been studied extensively, relatively little is known about the transcriptional regulation governing its effects. We have previously observed that in primary cultures of rat hippocampal neurons treatment with nerve growth factor for 72 hr increases neurite outgrowth and cell survival. To obtain a comprehensive view of the underlying transcriptional program, we performed whole-genome expression analysis by microarray technology. We identified 541 differentially expressed genes and characterized dysregulated pathways related to innate immunity: the complement system and neuro-inflammatory signaling. The exploitation of such genes and pathways may help interfering with the intracellular mechanisms involved in neuronal survival and guide novel therapeutic strategies for neurodegenerative diseases.


Assuntos
Anti-Inflamatórios/farmacologia , Fator Neurotrófico Derivado do Encéfalo/efeitos dos fármacos , Inflamação/tratamento farmacológico , Neurônios/efeitos dos fármacos , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/imunologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Regulação da Expressão Gênica/fisiologia , Hipocampo/efeitos dos fármacos , Terapia de Imunossupressão/métodos , Neuritos/efeitos dos fármacos , Crescimento Neuronal/efeitos dos fármacos , Neurônios/metabolismo , Ratos Wistar
8.
Front Cell Neurosci ; 12: 487, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30618634

RESUMO

Basal forebrain cholinergic neurons (BFCNs) depend on nerve growth factor (NGF) for their survival/differentiation and innervate cortical and hippocampal regions involved in memory/learning processes. Cholinergic hypofunction and/or degeneration early occurs at prodromal stages of Alzheimer's disease (AD) neuropathology in correlation with synaptic damages, cognitive decline and behavioral disability. Alteration(s) in ubiquitin-proteasome system (UPS) is also a pivotal AD hallmark but whether it plays a causative, or only a secondary role, in early synaptic failure associated with disease onset remains unclear. We previously reported that impairment of NGF/TrkA signaling pathway in cholinergic-enriched septo-hippocampal primary neurons triggers "dying-back" degenerative processes which occur prior to cell death in concomitance with loss of specific vesicle trafficking proteins, including synapsin I, SNAP-25 and α-synuclein, and with deficit in presynaptic excitatory neurotransmission. Here, we show that in this in vitro neuronal model: (i) UPS stimulation early occurs following neurotrophin starvation (-1 h up to -6 h); (ii) NGF controls the steady-state levels of these three presynaptic proteins by acting on coordinate mechanism(s) of dynamic ubiquitin-C-terminal hydrolase 1 (UCHL-1)-dependent (mono)ubiquitin turnover and UPS-mediated protein degradation. Importantly, changes in miniature excitatory post-synaptic currents (mEPSCs) frequency detected in -6 h NGF-deprived primary neurons are strongly reverted by acute inhibition of UPS and UCHL-1, indicating that NGF tightly controls in vitro the presynaptic efficacy via ubiquitination-mediated pathway(s). Finally, changes in synaptic ubiquitin and selective reduction of presynaptic markers are also found in vivo in cholinergic nerve terminals from hippocampi of transgenic Tg2576 AD mice, even from presymptomatic stages of neuropathology (1-month-old). By demonstrating a crucial role of UPS in the dysregulation of NGF/TrkA signaling on properties of cholinergic synapses, these findings from two well-established cellular and animal AD models provide novel therapeutic targets to contrast early cognitive and synaptic dysfunction associated to selective degeneration of BFCNs occurring in incipient early/middle-stage of disease.

9.
Oncotarget ; 8(39): 64745-64778, 2017 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-29029390

RESUMO

The largest part of tau secreted from AD nerve terminals and released in cerebral spinal fluid (CSF) is C-terminally truncated, soluble and unaggregated supporting potential extracellular role(s) of NH2 -derived fragments of protein on synaptic dysfunction underlying neurodegenerative tauopathies, including Alzheimer's disease (AD). Here we show that sub-toxic doses of extracellular-applied human NH2 tau 26-44 (aka NH 2 htau) -which is the minimal active moiety of neurotoxic 20-22kDa peptide accumulating in vivo at AD synapses and secreted into parenchyma- acutely provokes presynaptic deficit in K+ -evoked glutamate release on hippocampal synaptosomes along with alteration in local Ca2+ dynamics. Neuritic dystrophy, microtubules breakdown, deregulation in presynaptic proteins and loss of mitochondria located at nerve endings are detected in hippocampal cultures only after prolonged exposure to NH 2 htau. The specificity of these biological effects is supported by the lack of any significant change, either on neuronal activity or on cellular integrity, shown by administration of its reverse sequence counterpart which behaves as an inactive control, likely due to a poor conformational flexibility which makes it unable to dynamically perturb biomembrane-like environments. Our results demonstrate that one of the AD-relevant, soluble and secreted N-terminally truncated tau forms can early contribute to pathology outside of neurons causing alterations in synaptic activity at presynaptic level, independently of overt neurodegeneration.

10.
Int J Mol Sci ; 18(6)2017 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-28632177

RESUMO

Dysfunction of nerve growth factor (NGF) and its high-affinity Tropomyosin receptor kinase A (TrkA) receptor has been suggested to contribute to the selective degeneration of basal forebrain cholinergic neurons (BFCN) associated with the progressive cognitive decline in Alzheimer's disease (AD). The aim of this review is to describe our progress in elucidating the molecular mechanisms underlying the dynamic interplay between NGF/TrkA signaling and amyloid precursor protein (APP) metabolism within the context of AD neuropathology. This is mainly based on the finding that TrkA receptor binding to APP depends on a minimal stretch of ~20 amino acids located in the juxtamembrane/extracellular domain of APP that carries the α- and ß-secretase cleavage sites. Here, we provide evidence that: (i) NGF could be one of the "routing" proteins responsible for modulating the metabolism of APP from amyloidogenic towards non-amyloidogenic processing via binding to the TrkA receptor; (ii) the loss of NGF/TrkA signaling could be linked to sporadic AD contributing to the classical hallmarks of the neuropathology, such as synaptic loss, ß-amyloid peptide (Aß) deposition and tau abnormalities. These findings will hopefully help to design therapeutic strategies for AD treatment aimed at preserving cholinergic function and anti-amyloidogenic activity of the physiological NGF/TrkA pathway in the septo-hippocampal system.


Assuntos
Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Fator de Crescimento Neural/metabolismo , Receptor trkA/metabolismo , Transdução de Sinais , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Proteínas Amiloidogênicas , Animais , Neurônios Colinérgicos , Hipocampo/metabolismo , Humanos , Neuropatologia , Sinapses/metabolismo , Proteínas tau/metabolismo
11.
Oncotarget ; 8(21): 34024-34025, 2017 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-28423348
12.
Front Mol Neurosci ; 10: 15, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28197073

RESUMO

The amyloid precursor protein (APP) interacts with the tropomyosin receptor kinase A (TrkA) in normal rat, mouse, and human brain tissue but not in Alzheimer's disease (AD) brain tissue. However, it has not been reported whether the two proteins interact directly, and if so, which domains are involved. Clarifying these points will increase our understanding of the role and regulation of the TrkA/APP interaction in normal brain functioning as well as in AD. Here we addressed these questions using bimolecular fluorescence complementation (BiFC) and the proximity ligation assay (PLA). We demonstrated that exogenously expressed APP and TrkA associate through their juxtamembrane/transmembrane domains, to form a complex that localizes mainly to the plasma membrane, endoplasmic reticulum (ER) and Golgi. Formation of the complex was inhibited by p75NTR, ShcC and Mint-2. Importantly, we demonstrated that the association between endogenous APP and TrkA in primary septal neurons were modified by NGF, or by drugs that either inhibit ER-to-Golgi transport or perturb microtubules and microfilaments. Interestingly, several agents that induce cell death [amyloid ß (Aß)-peptide, staurosporine and rapamycin], albeit via different mechanisms, all caused dissociation of APP/TrkA complexes and increased production of C-terminal fragment (ß-CTF) APP fragment. These findings open new perspectives for investigating the interplay between these proteins during neurodegeneration and AD.

13.
J Neurosci ; 37(3): 546-561, 2017 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-28100738

RESUMO

MicroRNAs (miRNA) play an important role in post-transcriptional gene regulation of several physiological and pathological processes. In multiple sclerosis (MS), a chronic inflammatory and degenerative disease of the CNS, and in its mouse model, the experimental autoimmune encephalomyelitis (EAE), miRNA dysregulation has been mainly related to immune system dysfunction and white matter (WM) pathology. However, little is known about their role in gray matter pathology. Here, we explored miRNA involvement in the inflammation-driven alterations of synaptic structure and function, collectively known as synaptopathy, a neuropathological process contributing to excitotoxic neurodegeneration in MS/EAE. Particularly, we observed that miR-142-3p is increased in the CSF of patients with active MS and in EAE brains. We propose miR-142-3p as a molecular mediator of the IL-1ß-dependent downregulation of the glial glutamate-aspartate transporter (GLAST), which causes an enhancement of the glutamatergic transmission in the EAE cerebellum. The synaptic abnormalities mediated by IL-1ß and the clinical and neuropathological manifestations of EAE disappeared in miR-142 knock-out mice. Furthermore, we observed that in vivo miR-142-3p inhibition, either by a preventive and local treatment or by a therapeutic and systemic strategy, abolished IL-1ß- and GLAST-dependent synaptopathy in EAE wild-type mice. Consistently, miR-142-3p was responsible for the glutamatergic synaptic alterations caused by CSF of patients with MS, and CSF levels of miR-142-3p correlated with prospective MS disease progression. Our findings highlight miR-142-3p as key molecular player in IL-1ß-mediated synaptic dysfunction, possibly leading to excitotoxic damage in both EAE and MS diseases. Inhibition of miR-142-3p could be neuroprotective in MS. SIGNIFICANCE STATEMENT: Current studies suggest the role of glutamate excitotoxicity in the development and progression of multiple sclerosis (MS) and of its mouse model experimental autoimmune encephalomyelitis (EAE). The molecular mechanisms linking inflammation and synaptic alterations in MS/EAE are still unknown. Here, we identified miR-142-3p as a determinant molecular actor in inflammation-dependent synaptopathy typical of both MS and EAE. miR-142-3p was upregulated in the CSF of MS patients and in EAE cerebellum. Inhibition of miR-142-3p, locally in EAE brain and in a MS chimeric ex vivo model, recovered glutamatergic synaptic enhancement typical of EAE/MS. We proved that miR-142-3p promoted the IL-1ß-dependent glutamate dysfunction by targeting glutamate-aspartate transporter (GLAST), a crucial glial transporter involved in glutamate homeostasis. Finally, we suggest miR-142-3p as a negative prognostic factor in patients with relapsing-remitting multiple sclerosis.


Assuntos
Encefalomielite Autoimune Experimental/metabolismo , Interleucina-1beta/biossíntese , MicroRNAs/biossíntese , Esclerose Múltipla Recidivante-Remitente/metabolismo , Sinapses/metabolismo , Adulto , Animais , Células Cultivadas , Encefalomielite Autoimune Experimental/patologia , Feminino , Técnicas de Introdução de Genes , Humanos , Inflamação/metabolismo , Inflamação/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/líquido cefalorraquidiano , Pessoa de Meia-Idade , Esclerose Múltipla Recidivante-Remitente/líquido cefalorraquidiano , Esclerose Múltipla Recidivante-Remitente/diagnóstico , Sinapses/patologia
14.
Expert Opin Drug Discov ; 12(3): 249-259, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28067072

RESUMO

INTRODUCTION: Inappropriate activation of apoptosis may contribute to neurodegeneration, a multifaceted process that results in various chronic disorders, including Alzheimer's and Parkinson's diseases. Several in vitro and in vivo studies demonstrated that neuronal apoptosis is a multi-pathway cell-death program that requires RNA synthesis. Thus, transcriptionally activated genes whose products induce cell death can be triggered by different stimuli and antagonized by neurotrophic factors. Systems biology is now unveiling the series of intracellular signaling pathways and key drug targets at the intersection of neuronal apoptosis and survival. Areas covered: This review introduces a genomic approach that can be used to elucidate the systems biology of neuronal apoptosis and survival, and to rationally select drug targets, no longer oriented to emulate the action of growth factors at the membrane receptor level, but rather to modulate their downstream signals. Expert opinion: The advent of genomics is offering an unprecedented opportunity to explore how the delicate balance between apoptosis and survival-inducing signals triggers a transcriptional program. Characterization of this program can be useful to identify potential pharmacological targets for existing drugs. Such knowledge might pave the way towards an innovative pharmacology.


Assuntos
Desenho de Fármacos , Terapia de Alvo Molecular , Doenças Neurodegenerativas/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Genômica , Humanos , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/fisiopatologia , Neurônios/efeitos dos fármacos , Neurônios/patologia , Transdução de Sinais , Biologia de Sistemas
15.
Neuropharmacology ; 109: 357-365, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27350290

RESUMO

Recent evidence suggests an early involvement of dopaminergic (DA) processes and terminals in Parkinson's disease (PD). The arborization of neurons depends on the actin cytoskeleton, which in turn is regulated by small GTPases of the Rho family, encompassing Rho, Rac and Cdc42 subfamilies. Indeed, some reports point to a role for Rac and Cdc42 signaling in the pathophysiology of inherited parkinsonisms. We thus investigated the potential therapeutic effect of the modulation of cerebral Rho GTPases in PD. Cytotoxic necrotizing factor 1 (CNF1), a 114 kDa protein toxin produced by Escherichia coli, permanently activates RhoA, Rac1 and Cdc42 in intact cells. We report that the modulation of Rho GTPases by CNF1 results in hypertrophy of DA cell processes of cultured substantia nigra neurons, including increase in length, branching and varicosity. In vivo, the treatment corrects long-standing motor and biochemical asymmetries and restores degenerated nigrostriatal DA tissue after 6-hydroxydopamine lesion. We conclude that the pharmacological modulation of Rho GTPases shows neurorestorative potential and represents a promising avenue in the treatment PD. The study also suggests that naturally occurring molecules acting on Rho GTPase signaling, such as some bacterial protein toxins, might play a role in the development of PD.


Assuntos
Toxinas Bacterianas/uso terapêutico , Proteínas de Escherichia coli/uso terapêutico , Transtornos Parkinsonianos/tratamento farmacológico , Transtornos Parkinsonianos/enzimologia , Proteínas rho de Ligação ao GTP/agonistas , Proteínas rho de Ligação ao GTP/metabolismo , Animais , Toxinas Bacterianas/farmacologia , Células Cultivadas , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Proteínas de Escherichia coli/farmacologia , Masculino , Neurônios/efeitos dos fármacos , Neurônios/enzimologia , Ratos , Ratos Wistar , Substância Negra/efeitos dos fármacos , Substância Negra/enzimologia , Resultado do Tratamento
16.
Aging Cell ; 15(4): 661-72, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27076121

RESUMO

NGF has been implicated in forebrain neuroprotection from amyloidogenesis and Alzheimer's disease (AD). However, the underlying molecular mechanisms are still poorly understood. Here, we investigated the role of NGF signalling in the metabolism of amyloid precursor protein (APP) in forebrain neurons using primary cultures of septal neurons and acute septo-hippocampal brain slices. In this study, we show that NGF controls the basal level of APP phosphorylation at Thr668 (T668) by downregulating the activity of the Ser/Thr kinase JNK(p54) through the Tyr kinase signalling adaptor SH2-containing sequence C (ShcC). We also found that the specific NGF receptor, Tyr kinase A (TrkA), which is known to bind to APP, fails to interact with the fraction of APP molecules phosphorylated at T668 (APP(pT668) ). Accordingly, the amount of TrkA bound to APP is significantly reduced in the hippocampus of ShcC KO mice and of patients with AD in which elevated APP(pT668) levels are detected. NGF promotes TrkA binding to APP and APP trafficking to the Golgi, where APP-BACE interaction is hindered, finally resulting in reduced generation of sAPPß, CTFß and amyloid-beta (1-42). These results demonstrate that NGF signalling directly controls basal APP phosphorylation, subcellular localization and BACE cleavage, and pave the way for novel approaches specifically targeting ShcC signalling and/or the APP-TrkA interaction in AD therapy.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/metabolismo , Regulação para Baixo/efeitos dos fármacos , Fator de Crescimento Neural/farmacologia , Fosfotreonina/metabolismo , Adulto , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Ácido Aspártico Endopeptidases/metabolismo , Ativação Enzimática/efeitos dos fármacos , Deleção de Genes , Complexo de Golgi/efeitos dos fármacos , Complexo de Golgi/metabolismo , Hipocampo/patologia , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Células PC12 , Fosforilação/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Ratos , Receptor trkA/metabolismo , Proteína 3 de Transformação que Contém Domínio 2 de Homologia de Src/metabolismo
17.
J Cell Sci ; 129(4): 804-16, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26743087

RESUMO

Disconnection between membrane signalling and actin networks can have catastrophic effects depending on cell size and polarity. The survival motor neuron (SMN) protein is ubiquitously involved in assembly of spliceosomal small nuclear ribonucleoprotein particles. Other SMN functions could, however, affect cellular activities driving asymmetrical cell surface expansions. Genes able to mitigate SMN deficiency operate within pathways in which SMN can act, such as mRNA translation, actin network and endocytosis. Here, we found that SMN accumulates at membrane protrusions during the dynamic rearrangement of the actin filaments. In addition to localization data, we show that SMN interacts with caveolin-1, which mediates anchoring of translation machinery components. Importantly, SMN deficiency depletes the plasma membrane of ribosomes, and this correlates with the failure of fibroblasts to extend membrane protrusions. These findings strongly support a relationship between SMN and membrane dynamics. We propose that SMN could assembly translational platforms associated with and governed by the plasma membrane. This activity could be crucial in cells that have an exacerbated interdependence of membrane remodelling and local protein synthesis.


Assuntos
Membrana Celular/metabolismo , Proteínas do Complexo SMN/fisiologia , Citoesqueleto de Actina/metabolismo , Caveolina 1/metabolismo , Membrana Celular/ultraestrutura , Extensões da Superfície Celular/metabolismo , Extensões da Superfície Celular/ultraestrutura , Células Cultivadas , Humanos , Biossíntese de Proteínas , Transporte Proteico , Ribossomos/metabolismo
18.
Sci Rep ; 5: 15301, 2015 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-26477583

RESUMO

Bv8/Prokineticin 2 (PROK2) is a bioactive peptide initially discovered as a regulator of gastrointestinal motility. Among multiple biological roles demonstrated for PROK2, it was recently established that PROK2 is an insult-inducible endangering mediator for cerebral damage. Aim of the present study was to evaluate the PROK2 and its receptors' potential involvement in amyloid beta (Aß) neurotoxicity, a hallmark of Alzheimer's disease (AD) and various forms of traumatic brain injury (TBI). Analyzing primary cortical cultures (CNs) and cortex and hippocampus from Aß treated rats, we found that PROK2 and its receptors PKR1 and PKR2 mRNA are up-regulated by Aß, suggesting their potential involvement in AD. Hence we evaluated if impairing the prokineticin system activation might have protective effect against neuronal death induced by Aß. We found that a PKR antagonist concentration-dependently protects CNs against Aß(1-42)-induced neurotoxicity, by reducing the Aß-induced PROK2 neuronal up-regulation. Moreover, the antagonist completely rescued LTP impairment in hippocampal slices from 6 month-old Tg2576 AD mice without affecting basal synaptic transmission and paired pulse-facilitation paradigms. These results indicate that PROK2 plays a role in cerebral amyloidosis and that PROK2 antagonists may represent a new approach for ameliorating the defining pathology of AD.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Hormônios Gastrointestinais/metabolismo , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/toxicidade , Animais , Apoptose/efeitos dos fármacos , Hormônios Gastrointestinais/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Hipocampo/metabolismo , Potenciação de Longa Duração/efeitos dos fármacos , Potenciação de Longa Duração/genética , Masculino , Camundongos , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Neuropeptídeos/genética , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/toxicidade , Transporte Proteico , Ratos , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Regulação para Cima
19.
Cell Mol Life Sci ; 72(21): 4173-91, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25975226

RESUMO

The establishment of neuronal polarity and axonal outgrowth are key processes affecting neuronal migration and synapse formation, their impairment likely leading to cognitive deficits. Here we have found that the apoptotic protease activating factor 1 (Apaf1), apart from its canonical role in apoptosis, plays an additional function in cortical neurons, where its deficiency specifically impairs axonal growth. Given the central role played by centrosomes and microtubules in the polarized extension of the axon, our data suggest that Apaf1-deletion affects axonal outgrowth through an impairment of centrosome organization. In line with this, centrosomal protein expression, as well as their centrosomal localization proved to be altered upon Apaf1-deletion. Strikingly, we also found that Apaf1-loss affects trans-Golgi components and leads to a robust activation of AMP-dependent protein kinase (AMPK), this confirming the stressful conditions induced by Apaf1-deficiency. Since AMPK hyper-phosphorylation is known to impair a proper axon elongation, our finding contributes to explain the effect of Apaf1-deficiency on axogenesis. We also discovered that the signaling pathways mediating axonal growth and involving glycogen synthase kinase-3ß, liver kinase B1, and collapsing-response mediator protein-2 are altered in Apaf1-KO neurons. Overall, our results reveal a novel non-apoptotic role for Apaf1 in axonal outgrowth, suggesting that the neuronal phenotype due to Apaf1-deletion could not only be fully ascribed to apoptosis inhibition, but might also be the result of defects in axogenesis. The discovery of new molecules involved in axonal elongation has a clinical relevance since it might help to explain neurological abnormalities occurring during early brain development.


Assuntos
Fator Apoptótico 1 Ativador de Proteases/genética , Fator Apoptótico 1 Ativador de Proteases/metabolismo , Axônios/patologia , Córtex Cerebral/patologia , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Axônios/fisiologia , Diferenciação Celular , Centrossomo/metabolismo , Córtex Cerebral/embriologia , Proteína 4 Homóloga a Disks-Large , Regulação da Expressão Gênica no Desenvolvimento , Complexo de Golgi/metabolismo , Guanilato Quinases/genética , Guanilato Quinases/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Neurônios/citologia , Neurônios/patologia , Neurônios/fisiologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo
20.
Artigo em Inglês | MEDLINE | ID: mdl-24795622

RESUMO

A fine balance between cell survival and cell death is required to sculpt the nervous system during development. However, an excess of cell death can occur following trauma, exposure to neurotoxins or alcohol, and some developmental and neurodegenerative diseases, such as Alzheimer's disease (AD). N-Methyl-D-aspartate receptors (NMDARs) support synaptic plasticity and survival of many neuronal populations whereas inappropriate activation may promote various forms of cell death, apoptosis, and necrosis representing the two extremes of a continuum of cell death processes both "in vitro" and "in vivo." Hence, by identifying the switches controlling pro-survival vs. apoptosis and apoptosis vs. pro-excitotoxic outcome of NMDAR stimulation, NMDAR modulators could be developed that selectively block the cell death enhancing pro-survival signaling or synaptic plasticity mediated by NMDAR. Among these modulators, a role is emerging for the enzyme serine racemase (SR) that synthesizes D-serine, a key co-agonist with glutamate at NMDAR. This review summarizes the experimental evidence from "in vitro" neuronal cultures-with special emphasis on cerebellar granule neurons (CGNs)-and "in vivo" models of neurodegeneration, where the dual role of the SR/D-serine pathway as a master regulator of apoptosis and the apoptosis-necrosis shift will be discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA