Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Immunol Lett ; 254: 54-64, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36764611

RESUMO

An antigen panel consisting of Epstein-Barr, measles, mumps, varicella zoster and rubella viruses (EMMRZ) was recently presented, which may aid in the diagnosis of multiple sclerosis (MS). The aim of this study was to validate and extend the EMMRZ panel. Various candidates, such as Cytomegalovirus and John Cunningham virus were analysed in relapsing-remitting MS (RRMS) and optic neuritis (ON) samples by enzyme-linked immunosorbent assay. IgG levels were elevated in RRMS samples and correlations were found between serum and cerebrospinal fluid levels. Cohort-dependent optimized panels were obtained for RRMS and ON, which obtained the highest sensitivity when combined with the status of oligoclonal bands.


Assuntos
Esclerose Múltipla Recidivante-Remitente , Esclerose Múltipla , Neurite Óptica , Humanos , Imunoglobulina G , Anticorpos Antivirais , Antígenos Virais
2.
Curr Issues Mol Biol ; 44(5): 1768-1787, 2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35678651

RESUMO

The ER chaperone calreticulin (CALR) also has extracellular functions and can exit the mammalian cell in response to various factors, although the mechanism by which this takes place is unknown. The yeast Saccharomyces cerevisiae efficiently secretes human CALR, and the analysis of this process in yeast could help to clarify how it gets out of eukaryotic cells. We have achieved a secretion titer of about 140 mg/L CALR in our S. cerevisiae system. Here, we present a comparative quantitative whole proteome study in CALR-secreting yeast using non-equilibrium pH gradient electrophoresis (NEPHGE)-based two-dimensional gel electrophoresis (2DE) as well as liquid chromatography mass spectrometry in data-independent analysis mode (LC-MSE). A reconstructed carrier ampholyte (CA) composition of NEPHGE-based first-dimension separation for 2DE could be used instead of formerly commercially available gels. Using LC-MSE, we identified 1574 proteins, 20 of which exhibited differential expression. The largest group of differentially expressed proteins were structural ribosomal proteins involved in translation. Interestingly, we did not find any signs of cellular stress which is usually observed in recombinant protein-producing yeast, and we did not identify any secretory pathway proteins that exhibited changes in expression. Taken together, high-level secretion of human recombinant CALR protein in S. cerevisiae does not induce cellular stress and does not burden the cellular secretory machinery. There are only small changes in the cellular proteome of yeast secreting CALR at a high level.

3.
Int J Mol Sci ; 23(12)2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35743208

RESUMO

The serologic diagnosis of coronavirus disease 2019 (COVID-19) and the evaluation of vaccination effectiveness are identified by the presence of antibodies specific to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In this paper, we present the electrochemical-based biosensing technique for the detection of antibodies specific to the SARS-CoV-2 proteins. Recombinant SARS-CoV-2 spike proteins (rSpike) were immobilised on the surface of a gold electrode modified by a self-assembled monolayer (SAM). This modified electrode was used as a sensitive element for the detection of polyclonal mouse antibodies against the rSpike (anti-rSpike). Electrochemical impedance spectroscopy (EIS) was used to observe the formation of immunocomplexes while cyclic voltammetry (CV) was used for additional analysis of the surface modifications. It was revealed that the impedimetric method and the elaborate experimental conditions are appropriate for the further development of electrochemical biosensors for the serological diagnosis of COVID-19 and/or the confirmation of successful vaccination against SARS-CoV-2.


Assuntos
Técnicas Biossensoriais , COVID-19 , Animais , Anticorpos , Técnicas Biossensoriais/métodos , COVID-19/diagnóstico , Técnicas Eletroquímicas/métodos , Humanos , Camundongos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus
4.
Int J Mol Sci ; 23(12)2022 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-35743246

RESUMO

Myeloproliferative Neoplasms (MPNs) constitute a group of rare blood cancers that are characterized by mutations in bone marrow stem cells leading to the overproduction of erythrocytes, leukocytes, and thrombocytes. Mutations in calreticulin (CRT) genes may initiate MPNs, causing a novel variable polybasic stretch terminating in a common C-terminal sequence in the frameshifted CRT (CRTfs) proteins. Peptide antibodies to the mutated C-terminal are important reagents for research in the molecular mechanisms of MPNs and for the development of new diagnostic assays and therapies. In this study, eight peptide antibodies targeting the C-terminal of CRTfs were produced and characterised by modified enzyme-linked immunosorbent assays using resin-bound peptides. The antibodies reacted to two epitopes: CREACLQGWTE for SSI-HYB 385-01, 385-02, 385-03, 385-04, 385-07, 385-08, and 385-09 and CLQGWT for SSI-HYB 385-06. For the majority of antibodies, the residues Cys1, Trp9, and Glu11 were essential for reactivity. SSI-HYB 385-06, with the highest affinity, recognised recombinant CRTfs produced in yeast and the MARIMO cell line expressing CRTfs when examined in Western immunoblotting. Moreover, SSI-HYB 385-06 occasionally reacted to CRTfs from MPN patients when analysed by flow cytometry. The characterized antibodies may be used to understand the role of CRTfs in the pathogenesis of MPNs and to design and develop new diagnostic assays and therapeutic targets.


Assuntos
Calreticulina , Transtornos Mieloproliferativos , Anticorpos/metabolismo , Calreticulina/genética , Calreticulina/metabolismo , Humanos , Mutação , Transtornos Mieloproliferativos/genética , Peptídeos/genética , Peptídeos/metabolismo
5.
Int J Mol Sci ; 23(8)2022 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-35457242

RESUMO

Two isoforms of the glutamate decarboxylase (GAD) enzyme exist, GAD65 and GAD67, which are associated with type 1 diabetes (T1D) and stiff-person syndrome (SPS), respectively. Interestingly, it has been reported that T1D patients seldom develop SPS, whereas patients with SPS occasionally develop T1D. In addition, coxsackievirus B4 (CVB4) has previously been proposed to be involved in the onset of T1D through molecular mimicry. On this basis, we aimed to examine antibody cross-reactivity between a specific region of GAD65 and GAD67, which has high sequence homology to the nonstructural P2C protein of CVB4 to determine potential correlations at antibody level. Monoclonal peptide antibodies generated in mice specific for a region with high similarity in all three proteins were screened for reactivity along with human sera in immunoassays. In total, six antibodies were generated. Two of the antibodies reacted to both GAD isoforms. However, none of the antibodies were cross-reactive to CVB, suggesting that antibody cross-reactivity between GAD65 and CVB, and GAD67 and CVB may not contribute to the onset of T1D and SPS, respectively.


Assuntos
Diabetes Mellitus Tipo 1 , Rigidez Muscular Espasmódica , Animais , Anticorpos Monoclonais , Autoanticorpos , Glutamato Descarboxilase/metabolismo , Humanos , Camundongos , Peptídeos , Isoformas de Proteínas
6.
Electrochim Acta ; 403: 139581, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-34898691

RESUMO

This study describes the application of a polypyrrole-based sensor for the determination of SARS-CoV-2-S spike glycoprotein. The SARS-CoV-2-S spike glycoprotein is a spike protein of the coronavirus SARS-CoV-2 that recently caused the worldwide spread of COVID-19 disease. This study is dedicated to the development of an electrochemical determination method based on the application of molecularly imprinted polymer technology. The electrochemical sensor was designed by molecular imprinting of polypyrrole (Ppy) with SARS-CoV-2-S spike glycoprotein (MIP-Ppy). The electrochemical sensors with MIP-Ppy and with polypyrrole without imprints (NIP-Ppy) layers were electrochemically deposited on a platinum electrode surface by a sequence of potential pulses. The performance of polymer layers was evaluated by pulsed amperometric detection. According to the obtained results, a sensor based on MIP-Ppy is more sensitive to the SARS-CoV-2-S spike glycoprotein than a sensor based on NIP-Ppy. Also, the results demonstrate that the MIP-Ppy layer is more selectively interacting with SARS-CoV-2-S glycoprotein than with bovine serum albumin. This proves that molecularly imprinted MIP-Ppy-based sensors can be applied for the detection of SARS-CoV-2 virus proteins.

7.
Biochim Biophys Acta Proteins Proteom ; 1869(11): 140710, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34358706

RESUMO

Calreticulin (CALR) is a highly conserved multifunctional chaperone protein primarily present in the endoplasmic reticulum, where it regulates Ca2+ homeostasis. Recently, CALR has gained special interest for its diverse functions outside the endoplasmic reticulum, including the cell surface and extracellular space. Although high-resolution structures of CALR exist, it has not yet been established how different regions and individual amino acid residues contribute to structural stability of the protein. In the present study, we have identified key residues determining the structural stability of CALR. We used a Saccharomyces cerevisiae expression system to express and purify 50 human CALR mutants, which were analysed for several parameters including secretion titer, melting temperature (Tm), stability and oligomeric state. Our results revealed the importance of a previously identified small patch of conserved surface residues, amino acids 166-187 ("cluster 2") for structural stability of the human CALR protein. Two residues, Tyr172 and Asp187, were critical for maintaining the native structure of the protein. Mutant D187A revealed a severe drop in secretion titer, it was thermally unstable, prone to degradation, and oligomer formation. Tyr172 was critical for thermal stability of CALR and interacted with the third free Cys163 residue. This illustrates an unusual thermal stability of CALR dominated by Asp187, Tyr172 and Cys163, which may interact as part of a conserved structural unit. Besides structural clusters, we found a correlation of some measured parameter values in groups of CALR mutants that cause myeloproliferative neoplasms (MPN) and in mutants that may be associated with sudden unexpected death (SUD).


Assuntos
Substituição de Aminoácidos , Calreticulina/química , Simulação de Dinâmica Molecular , Calreticulina/genética , Humanos , Domínios Proteicos , Estabilidade Proteica
8.
Antibodies (Basel) ; 10(3)2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34449535

RESUMO

Calreticulin is a chaperone protein, which is associated with myeloproliferative diseases. In this study, we used resin-bound peptides to characterize two monoclonal antibodies (mAbs) directed to calreticulin, mAb FMC 75 and mAb 16, which both have significantly contributed to understanding the biological function of calreticulin. The antigenicity of the resin-bound peptides was determined by modified enzyme-linked immunosorbent assay. Specific binding was determined to an 8-mer epitope located in the N-terminal (amino acids 34-41) and to a 12-mer peptide located in the C-terminal (amino acids 362-373). Using truncated peptides, the epitopes were identified as TSRWIESK and DEEQRLKEEED for mAb FMC 75 and mAb 16, respectively, where, especially the charged amino acids, were found to have a central role for a stable binding. Further studies indicated that the epitope of mAb FMC 75 is assessable in the oligomeric structure of calreticulin, making this epitope a potential therapeutic target.

9.
Prog Mol Subcell Biol ; 59: 13-25, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34050860

RESUMO

Calreticulin (Calr) is an endoplasmic reticulum (ER) chaperone involved in protein quality control, Ca2+ regulation and other cellular processes. The structure of Calr is unusual, reflecting different functions of the protein: a proline-rich ß-hairpin arm and an acidic C-terminal tail protrude from a globular core, composed of a ß-sheet sandwich and an α-helix. The arm and tail interact in the presence of Ca2+ and cover the upper ß-sheet, where a carbohydrate-binding site gives the chaperone glycoprotein affinity. At the edge of the carbohydrate-binding site is a conserved, strained disulphide bridge, formed between C106 and C137 of human Calr, which lies in a polypeptide-binding site. The lower ß-sheet has several conserved residues, comprised of a characteristic triad, D166-H170-D187, Tyr172 and the free C163. In addition to its role in the ER, Calr translocates to the cell surface upon stress and functions as an immune surveillance marker. In some myeloproliferative neoplasms, the acidic Ca2+-binding C-terminal tail is transformed into a polybasic sequence.


Assuntos
Calreticulina , Retículo Endoplasmático , Sítios de Ligação/genética , Calreticulina/genética , Calreticulina/metabolismo , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Humanos , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Transtornos Mieloproliferativos
10.
J Colloid Interface Sci ; 594: 195-203, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-33761394

RESUMO

During the pandemic, different methods for SARS-CoV-2 detection and COVID-19 diagnostics were developed, including antibody and antigen tests. For a better understanding of the interaction mechanism between SARS-CoV-2 virus proteins and specific antibodies, total internal reflection ellipsometry based evaluation of the interaction between SARS-CoV-2 nucleoprotein (SCoV2-rN) and anti-SCoV2-rN antibodies was performed. Results show that the appropriate mathematical model, which takes into account the formation of an intermediate complex, can be applied for the evaluation of SCoV2-rN/anti-SCoV2-rN complex formation kinetics. The calculated steric factor indicated that SCoV2-rN/anti-SCoV2-rN complex formation has very strict steric requirements. Estimated Gibbs free energy (ΔGAssoc) for SCoV-rN and anti-SCoV-rN binding was determined as -34 kJ/mol. The reported findings are useful for the design of new analytical systems for the determination of anti-SCoV2-rN antibodies and for the development of new anti-SARS-CoV-2 medications.


Assuntos
Anticorpos Antivirais/química , Nucleoproteínas/química , SARS-CoV-2 , Cinética , Termodinâmica
11.
J Neuroimmunol ; 346: 577314, 2020 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-32682138

RESUMO

Antibody indices to Measles, Mumps, Varicella Zoster (MRZ) are of diagnostic value in multiple sclerosis (MS). Here, we have investigated, if this panel could be extended to increase diagnostic value. Samples from relapsing-remitting (RR) MS and optic neuritis (ON) patients were tested for reactivity to antigens from Epstein-Barr, Varicella Zoster, Measles, Mumps and Rubella (EMMRZ) viruses. Increased IgG levels in serum and cerebrospinal fluid (CSF) were found in RRMS patients, along with a significant correlation between serum and CSF. The sensitivity of the EMMRZ panel was increased approximately 40% compared to the MRZ panel, suggesting that the EMMRZ panel may be useful in MS and ON diagnostics.

12.
APMIS ; 127(9): 635-641, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31237033

RESUMO

In this study, several innate immunological adjuvants and related compounds were compared with respect to complement activation in serum and induction of cytokine release in whole blood samples using immunoassays. As found, simple lipids had no effect on the complement system or on cytokine release, whereas lipopolysaccharides induced prominent release of pro-inflammatory cytokines (IL1ß, TNF and IFNγ) without affecting the complement system, except for one, which activated the lectin pathway (LP). Moreover, saponin induced IL1ß and MCP1 release and did not affect the complement system. The polysaccharide inulin exhausted the alternative pathway (AP) completely without affecting the LP and the classical pathway (CP), whereas zymosan exhausted the AP and had a major effect on the LP and CP as well. Peptidoglycans mainly affected the LP. Inulin, agarose and cellulose induced IL1ß and MCP1 release, while dextran had no effect on cytokine secretion. Zymosan mainly induced IL1ß release. The inorganic compound aluminium hydroxide, Al(OH)3 , activated the complement system very efficiently (all three pathways) but only induced MCP1 release. Other compounds tested had minor/individual effects. Collectively, well-known adjuvants, such as aluminum hydroxide, activated the complement system and/or induced pro-inflammatory cytokine release. Since complement activation generates anaphylactic peptides, a simple definition of an (innate) immunological adjuvant can be inferred: it activates the (innate) immune system by complement activation and/or release of cytokines so as to attract cells of the adaptive immune system.


Assuntos
Adjuvantes Imunológicos/sangue , Adjuvantes Imunológicos/farmacologia , Ativação do Complemento/efeitos dos fármacos , Ativação do Complemento/imunologia , Proteínas do Sistema Complemento/imunologia , Citocinas/imunologia , Humanos , Imunoensaio/métodos , Soro/imunologia
13.
J Proteomics ; 142: 138-48, 2016 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-27195812

RESUMO

UNLABELLED: Calreticulin is a highly conserved multifunctional protein implicated in many different biological systems and has therefore been the subject of intensive research. It is primarily present in the endoplasmatic reticulum where its main functions are to regulate Ca(2+) homeostasis, act as a chaperone and stabilize the MHC class I peptide-loading complex. Although several high-resolution structures of calreticulin exist, these only cover three-quarters of the entire protein leaving the extended structures unsolved. Additionally, the structure of calreticulin is influenced by the presence of Ca(2+). The conformational changes induced by Ca(2+) have not been determined yet as they are hard to study with traditional approaches. Here, we investigated the Ca(2+)-induced conformational changes with a combination of chemical cross-linking, mass spectrometry, bioinformatics analysis and modelling in Rosetta. Using a bifunctional linker, we found a large Ca(2+)-induced change to the cross-linking pattern in calreticulin. Our results are consistent with a high flexibility in the P-loop, a stabilization of the acidic C-terminal and a relatively close interaction of the P-loop and the acidic C-terminal. BIOLOGICAL SIGNIFICANCE: The function of calreticulin, an endoplasmatic reticulin chaperone, is affected by fluctuations in Ca(2+)concentration, but the structural mechanism is unknown. The present work suggests that Ca(2+)-dependent regulation is caused by different conformations of a long proline-rich loop that changes the accessibility to the peptide/lectin-binding site. Our results indicate that the binding of Ca(2+) to calreticulin may thus not only just be a question of Ca(2+) storage but is likely to have an impact on the chaperone activity.


Assuntos
Cálcio/farmacologia , Calreticulina/química , Proteínas de Ligação ao Cálcio/química , Calreticulina/isolamento & purificação , Biologia Computacional , Feminino , Humanos , Espectrometria de Massas , Chaperonas Moleculares/metabolismo , Placenta/química , Gravidez , Ligação Proteica/efeitos dos fármacos , Conformação Proteica/efeitos dos fármacos
14.
Microb Cell Fact ; 14: 165, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26471510

RESUMO

BACKGROUND: Calreticulin (CRT) resides in the endoplasmic reticulum (ER) and functions to chaperone proteins, ensuring proper folding, and intracellular Ca(2+) homeostasis. Emerging evidence shows that CRT is a multifunctional protein with significant roles in physiological and pathological processes with presence both inside and outside of the ER, including the cell surface and extracellular space. These recent findings suggest the possible use of this ER chaperone in development of new therapeutic pharmaceuticals. Our study was focused on human CRT production in two yeast species, Saccharomyces cerevisiae and Pichia pastoris. RESULTS: Expression of a full-length human CRT precursor including its native signal sequence resulted in high-level secretion of mature recombinant protein into the culture medium by both S. cerevisiae and P. pastoris. To ensure the structural and functional quality of the yeast-derived CRTs, we compared yeast-secreted human recombinant CRT with native CRT isolated from human placenta. In ESI-MS (electrospray ionization mass spectrometry), both native and recombinant full-length CRT showed an identical molecular weight (mass) of 46,466 Da and were monomeric by non-denaturing PAGE. Moreover, limited trypsin digestion yielded identical fragment patterns of calcium-binding recombinant and native CRT suggesting that the yeast-derived CRT was correctly folded. Furthermore, both native and recombinant CRT induced cellular proliferation (MTS assay) and migration of human dermal fibroblasts (in vitro wound healing assay) with the same specific activities (peak responses at 1-10 ng/ml) indicating that the functional integrity of yeast-derived CRT was completely preserved. Simple one-step purification of CRT from shake-flask cultures resulted in highly pure recombinant CRT protein with yields reaching 75 % of total secreted protein and with production levels of 60 and 200 mg/l from S. cerevisiae and P. pastoris, respectively. Finally, cultivation of P. pastoris in a bioreactor yielded CRT secretion titer to exceed 1.5 g/l of culture medium. CONCLUSIONS: Yeasts are able to correctly process and secrete large amounts of mature recombinant human CRT equally and fully biologically active as native human CRT. This allows efficient production of high-quality CRT protein in grams per liter scale.


Assuntos
Calreticulina/metabolismo , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Reatores Biológicos , Calreticulina/química , Calreticulina/genética , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Dados de Sequência Molecular , Peso Molecular , Eletroforese em Gel de Poliacrilamida Nativa , Pichia/metabolismo , Placenta/metabolismo , Plasmídeos/genética , Plasmídeos/metabolismo , Gravidez , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacologia , Espectrometria de Massas por Ionização por Electrospray
15.
N Biotechnol ; 32(6): 690-700, 2015 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-25907596

RESUMO

The yield of heterologous proteins is often limited by several bottlenecks in the secretory pathway of yeast Saccharomyces cerevisiae. It was shown earlier that synthesis of measles virus hemagglutinin (MeH) is inefficient mostly due to a bottleneck in the translocation of viral protein precursors into the endoplasmic reticulum (ER) of yeast cells. Here we report that heat shock with subsequent induction of MeH expression at 37°C improved translocation of MeH precursors when applied at higher cell densities. The amount of MeH glycoprotein increased by about 3-fold after heat shock in the late-log phases of both glucose and ethanol growth. The same temperature conditions increased both secretion titer and yield of another heterologous protein human GRP78/BiP by about 50%. Furthermore, heat shock at the late-log glucose growth phase also improved endogenous invertase yield by approximately 2.7-fold. In contrast, a transfer of yeast culture to lower temperature at diauxic shift followed by protein expression at 20°C almost totally inhibited translocation of MeH precursors. The difference in amounts of MeH glycoprotein under expression at 37°C and 20°C was about 80-fold, while amounts of unglycosylated MeH polypeptides were similar under both conditions. Comparative proteomic analysis revealed that besides over-expressed ER-resident chaperone Kar2, an increased expression of several cytosolic proteins (such as Hsp104, Hsp90 and eEF1A) may contribute to improved translocation of MeH.


Assuntos
Proteínas de Choque Térmico/metabolismo , Resposta ao Choque Térmico/fisiologia , Hemaglutininas Virais/metabolismo , Engenharia de Proteínas/métodos , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/fisiologia , Contagem de Células , Técnicas de Cultura de Células/métodos , Retículo Endoplasmático/metabolismo , Chaperona BiP do Retículo Endoplasmático , Proteínas de Choque Térmico/genética , Hemaglutininas Virais/genética , Temperatura Alta , Humanos , Transporte Proteico , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Regulação para Cima/fisiologia
16.
Front Oncol ; 5: 15, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25692097

RESUMO

Calreticulin is recognized as one of the pivotal damage-associated molecular pattern molecules alerting the host of the presence of distressed cells. In this role, calreticulin becomes exposed on the surface of tumor cells treated by several types of cancer therapy including photodynamic therapy (PDT). The goal of the present study was to examine the potential of externally added calreticulin for augmenting antitumor effect mediated by PDT. Recombinant calreticulin was found to bind to mouse SCCVII tumor cells treated by PDT. Compared to the outcome with PDT alone, cure rates of SCCVII tumors grown in immunocompetent C3H/HeN mice were elevated when calreticulin (0.4 mg/mouse) was injected peritumorally immediately after PDT. Such therapeutic gain with PDT plus calreticulin combination was not obtained with SCCVII tumors growing in immunodeficient NOD-scid mice. In PDT-vaccine protocol, where PDT-treated SCCVII cells are used for vaccination of SCCVII tumor-bearing mice, adding recombinant calreticulin to cells before their injection produced improved therapeutic effect. The expression of calreticulin gene was reduced in PDT-treated cells, while no changes were observed with the expression of this gene in tumor, liver, and spleen tissues in PDT-vaccine-treated mice. These findings reveal that externally added recombinant calreticulin can boost antitumor response elicited by PDT or PDT-generated vaccines, and can thus serve as an effective adjuvant for cancer treatment with PDT and probably other cancer cell stress-inducing modalities.

17.
Microb Cell Fact ; 13: 22, 2014 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-24512104

RESUMO

BACKGROUND: Human BiP is traditionally regarded as a major endoplasmic reticulum (ER) chaperone performing a number of well-described functions in the ER. In recent years it was well established that this molecule can also be located in other cell organelles and compartments, on the cell surface or be secreted. Also novel functions were assigned to this protein. Importantly, BiP protein appears to be involved in cancer and rheumatoid arthritis progression, autoimmune inflammation and tissue damage, and thus could potentially be used for therapeutic purposes. In addition, a growing body of evidence indicates BiP as a new therapeutic target for the treatment of neurodegenerative diseases. Increasing importance of this protein and its involvement in critical human diseases demands new source of high quality native recombinant human BiP for further studies and potential application. Here we introduce yeast Saccharomyces cerevisiae as a host for the generation of human BiP protein. RESULTS: Expression of a full-length human BiP precursor in S. cerevisiae resulted in a high-level secretion of mature recombinant protein into the culture medium. The newly discovered ability of the yeast cells to recognize, correctly process the native signal sequence of human BiP and secrete this protein into the growth media allowed simple one-step purification of highly pure recombinant BiP protein with yields reaching 10 mg/L. Data presented in this study shows that secreted recombinant human BiP possesses native amino acid sequence and structural integrity, is biologically active and without yeast-derived modifications. Strikingly, ATPase activity of yeast-derived human BiP protein exceeded the activity of E. coli-derived recombinant human BiP by a 3-fold. CONCLUSIONS: S. cerevisiae is able to correctly process and secrete human BiP protein. Consequently, resulting recombinant BiP protein corresponds accurately to native analogue. The ability to produce large quantities of native recombinant human BiP in yeast expression system should accelerate the analysis and application of this important protein.


Assuntos
Retículo Endoplasmático/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatases/metabolismo , Sequência de Aminoácidos , Cromatografia Líquida de Alta Pressão , Chaperona BiP do Retículo Endoplasmático , Proteínas de Choque Térmico/química , Humanos , Dados de Sequência Molecular , Peso Molecular , Peptídeos/análise , Peptídeos/química , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
18.
Proteome Sci ; 11(1): 36, 2013 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-23889826

RESUMO

BACKGROUND: Two-dimensional gel electrophoresis (2DE) is one of the most popular methods in proteomics. Currently, most 2DE experiments are performed using immobilized pH gradient (IPG) in the first dimension; however, some laboratories still use carrier ampholytes-based isoelectric focusing technique. The aim of this study was to directly compare IPG-based and non-equilibrium pH gradient electrophoresis (NEPHGE)-based 2DE techniques by using the same samples and identical second dimension procedures. We have used commercially available Invitrogen ZOOM IPGRunner and WITAvision systems for IPG and NEPHGE, respectively. The effectiveness of IPG-based and NEPHGE-based 2DE methods was compared by analysing differential protein expression during cytosolic unfolded protein response (UPR-Cyto) in Saccharomyces cerevisiae. RESULTS: Protein loss during 2DE procedure was higher in IPG-based method, especially for basic (pI > 7) proteins. Overall reproducibility of spots was slightly better in NEPHGE-based method; however, there was a marked difference when evaluating basic and acidic protein spots. Using Coomassie staining, about half of detected basic protein spots were not reproducible by IPG-based 2DE, whereas NEPHGE-based method showed excellent reproducibility in the basic gel zone. The reproducibility of acidic proteins was similar in both methods. Absolute and relative volume variability of separate protein spots was comparable in both 2DE techniques. Regarding proteomic analysis of UPR-Cyto, the results exemplified parameters of general comparison of the methods. New highly basic protein Sis1p, overexpressed during UPR-Cyto stress, was identified by NEPHGE-based 2DE method, whereas IPG-based method showed unreliable results in the basic pI range and did not provide any new information on basic UPR-Cyto proteins. In the acidic range, the main UPR-Cyto proteins were detected and quantified by both methods. The drawback of NEPHGE-based 2DE method is its failure to detect some highly acidic proteins. The advantage of NEPHGE is higher protein capacity with good reproducibility and quality of spots at high protein load. CONCLUSIONS: Comparison of broad range (pH3-10) gradient-based 2DE methods suggests that NEPHGE-based method is preferable over IPG (Invitrogen) 2DE method for the analysis of basic proteins. Nevertheless, the narrow range (pH4-7) IPG technique is a method of choice for the analysis of acidic proteins.

19.
Protein Expr Purif ; 89(2): 131-5, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23528814

RESUMO

Human ERp57 protein is disulfide isomerase, facilitating proper folding of glycoprotein precursors in the concert with ER lectin chaperones calreticulin and calnexin. Growing amount of data also associates ERp57 with many different functions in subcellular locations outside the ER. Analysis of protein functions requires substantial amounts of correctly folded, biologically active protein, and in this study we introduce yeast Saccharomyces cerevisiae as a perfect host for production of human ERp57. Our data suggest that native signal peptide of human ERp57 protein is recognized and correctly processed in the yeast cells, which leads to protein secretion. Secreted recombinant ERp57 protein possesses native amino acid sequence and is biologically active. Moreover, secretion allows simple one-step purification of recombinant ERp57 protein with the yields reaching up to 10mg/L.


Assuntos
Clonagem Molecular , Isomerases de Dissulfetos de Proteínas/genética , Isomerases de Dissulfetos de Proteínas/metabolismo , Sinais Direcionadores de Proteínas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Clonagem Molecular/métodos , Expressão Gênica , Vetores Genéticos/genética , Humanos , Isomerases de Dissulfetos de Proteínas/química , Isomerases de Dissulfetos de Proteínas/isolamento & purificação , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo
20.
FEMS Yeast Res ; 11(6): 514-23, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21635688

RESUMO

The limitations of high-level expression of virus surface proteins in yeast are not well understood. The inefficiency of yeast to produce active human virus surface glycoproteins, as well as other mammalian glycoproteins, is usually explained by the inefficient folding of the glycoprotein into its characteristic and functional three-dimensional structure from a random coil. The endoplasmic reticulum (ER) is a highly versatile protein factory that is equipped with chaperones and folding enzymes essential for protein folding. To improve folding and solubility of viral surface glycoprotein, the genes encoding human ER resident chaperones calnexin, calreticulin, immunoglobin binding protein (BiP), protein disulfide isomerase (PDI) and foldase (ERp57) were coexpressed together with hemagglutinin gene from measles virus in the yeast Saccharomyces cerevisiae. The effect of coexpressing chaperones on the total yield of measles virus hemagglutinin (MeH) as well as the intracellular fate of the glycoprotein was determined. Our results demonstrated that coexpression of human calnexin noticeably enhanced the quantity of the soluble glycosylated form of MeH in yeast. The coexpression of human calreticulin-, PDI-, ERp57- and BiP-encoding genes did not improve the quality of recombinant MeH.


Assuntos
Calnexina/biossíntese , Calnexina/genética , Expressão Gênica , Hemaglutininas Virais/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Hemaglutininas Virais/genética , Hemaglutininas Virais/metabolismo , Humanos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA