Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 2428, 2022 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-35165307

RESUMO

Wildfires increase runoff and sediment yields that impact downstream ecosystems. While the effects of wildfire on stream water quality are well documented, oceanic responses to wildfire remain poorly understood. Therefore, this study investigated oceanic responses to the 2018 Woolsey Fire using satellite remote sensing and in situ data analyses. We examined 2016-2020 turbidity plume (n = 192) and 2008-2020 fecal indicator bacteria (FIB, n = 15,015) measurements at variable proximity to the Woolsey Fire. Shifts in coastal water quality were more pronounced in the "inside" region, which drained the burn area. The inside region experienced 2018-2019 plume surface area monthly means that were 10 and 9 times greater than 2016-2017 and 2017-2018 monthly means, respectively. Further, linear regressions showed that 2018-2019 three-day precipitation totals produced plumes of greater surface area. We also noted statistically significant increases in the inside region in 2018-2019 total coliform and Enterococcus monthly means that were 9 and 53 times greater than 2008-2018 monthly means, respectively. These results indicate that sediment and microbial inputs to coastal ecosystems can increase substantially post-wildfire at levels relevant to public and environmental health, and underscore the benefit of considering remote sensing and in situ measurements for water quality monitoring.

2.
Environ Sci Pollut Res Int ; 28(32): 43507-43514, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33834340

RESUMO

The dissemination of antibiotic resistance genes (ARGs) in the environment contributes to the global rise in antibiotic resistant infections. Therefore, it is of importance to further research the exposure pathways of these emerging contaminants to humans. This study explores commercially available garden products containing animal manure as a source of ARGs in a survey of 34 garden products, 3 recently landscaped soils, and 5 native soils. DNA was extracted from these soils and quantified for 5 ARGs, intI1, and 16S rRNA. This study found that both absolute and relative gene abundances in garden products ranged from approximately two to greater than four orders of magnitude higher than those observed in native soils. Garden products with Organic Materials Review Institute (OMRI) certification did not have significantly different ARG abundances. Results here indicate that garden products are important sources of ARGs to gardens, lawns, and parks.


Assuntos
Antibacterianos , Jardins , Animais , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos , Humanos , Esterco , RNA Ribossômico 16S/genética , Solo , Microbiologia do Solo
3.
ACS Omega ; 2(5): 2255-2263, 2017 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-30023659

RESUMO

Widespread prevalence of multidrug and pandrug-resistant bacteria has prompted substantial concern over the global dissemination of antibiotic resistance genes (ARGs). Environmental compartments can behave as genetic reservoirs and hotspots, wherein resistance genes can accumulate and be laterally transferred to clinically relevant pathogens. In this work, we explore the ARG copy quantities in three environmental media distributed across four cities in California and demonstrate that there exist city-to-city disparities in soil and drinking water ARGs. Statistically significant differences in ARGs were identified in soil, where differences in blaSHV gene copies were the most striking; the highest copy numbers were observed in Bakersfield (6.0 × 10-2 copies/16S-rRNA gene copies and 2.6 × 106 copies/g of soil), followed by San Diego (1.8 × 10-3 copies/16S-rRNA gene copies and 3.0 × 104 copies/g of soil), Fresno (1.8 × 10-5 copies/16S-rRNA gene copies and 8.5 × 102 copies/g of soil), and Los Angeles (5.8 × 10-6 copies/16S-rRNA gene copies and 5.6 × 102 copies/g of soil). In addition, ARG copy numbers in the air, water, and soil of each city are contextualized in relation to globally reported quantities and illustrate that individual genes are not necessarily predictors for the environmental resistome as a whole.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA