RESUMO
Neuroinflammation in the brain contributes to the pathogenesis of Parkinson's disease (PD), but the potential dysregulation of peripheral immunity has not been systematically investigated for idiopathic PD (iPD). Here we showed an elevated peripheral cytotoxic immune milieu, with more terminally-differentiated effector memory (TEMRA) CD8 T, CD8+ NKT cells and circulating cytotoxic molecules in fresh blood of patients with early-to-mid iPD, especially females, after analyzing > 700 innate and adaptive immune features. This profile, also reflected by fewer CD8+FOXP3+ T cells, was confirmed in another subcohort. Co-expression between cytotoxic molecules was selectively enhanced in CD8 TEMRA and effector memory (TEM) cells. Single-cell RNA-sequencing analysis demonstrated the accelerated differentiation within CD8 compartments, enhanced cytotoxic pathways in CD8 TEMRA and TEM cells, while CD8 central memory (TCM) and naïve cells were already more-active and transcriptionally-reprogrammed. Our work provides a comprehensive map of dysregulated peripheral immunity in iPD, proposing candidates for early diagnosis and treatments.
Assuntos
Doença de Parkinson , Humanos , Feminino , Doença de Parkinson/genética , Linfócitos T CD8-Positivos , Diferenciação Celular , Memória ImunológicaRESUMO
While immunopathology has been widely studied in patients with severe COVID-19, immune responses in non-hospitalized patients have remained largely elusive. We systematically analyze 484 peripheral cellular or soluble immune features in a longitudinal cohort of 63 mild and 15 hospitalized patients versus 14 asymptomatic and 26 household controls. We observe a transient increase of IP10/CXCL10 and interferon-ß levels, coordinated responses of dominant SARS-CoV-2-specific CD4 and fewer CD8 T cells, and various antigen-presenting and antibody-secreting cells in mild patients within 3 days of PCR diagnosis. The frequency of key innate immune cells and their functional marker expression are impaired in hospitalized patients at day 1 of inclusion. T cell and dendritic cell responses at day 1 are highly predictive for SARS-CoV-2-specific antibody responses after 3 weeks in mild but not hospitalized patients. Our systematic analysis reveals a combinatorial picture and trajectory of various arms of the highly coordinated early-stage immune responses in mild COVID-19 patients.
Assuntos
Antivirais , COVID-19 , Anticorpos Antivirais , Linfócitos T CD8-Positivos , Humanos , SARS-CoV-2RESUMO
Decline in immune function during aging increases susceptibility to different aging-related diseases. However, the underlying molecular mechanisms, especially the genetic factors contributing to imbalance of naïve/memory T-cell subpopulations, still remain largely elusive. Here, we show that loss of DJ-1 encoded by PARK7/DJ-1, causing early-onset familial Parkinson's disease (PD), unexpectedly diminished signs of immunoaging in T-cell compartments of both human and mice. Compared with two gender-matched unaffected siblings of similar ages, the index PD patient with DJ-1 deficiency showed a decline in many critical immunoaging features, including almost doubled non-senescent T cells. The observation was further consolidated by the results in 45-week-old DJ-1 knockout mice. Our data demonstrated that DJ-1 regulates several immunoaging features via hematopoietic-intrinsic and naïve-CD8-intrinsic mechanisms. Mechanistically, DJ-1 depletion reduced oxidative phosphorylation (OXPHOS) and impaired TCR sensitivity in naïve CD8 T cells at a young age, accumulatively leading to a reduced aging process in T-cell compartments in older mice. Our finding suggests an unrecognized critical role of DJ-1 in regulating immunoaging, discovering a potent target to interfere with immunoaging- and aging-associated diseases.
Assuntos
Estresse Oxidativo , Doença de Parkinson , Envelhecimento/genética , Animais , Humanos , Camundongos , Camundongos Knockout , Estresse Oxidativo/genética , Doença de Parkinson/genética , Proteína Desglicase DJ-1/genética , Proteína Desglicase DJ-1/metabolismo , Linfócitos TRESUMO
Lack of preclinical patient-derived xenograft cancer models in which to conduct large-scale molecular studies seriously impairs the development of effective personalized therapies. We report here an in vivo concept consisting of implanting human tumor cells in targeted tissues of an avian embryo, delivering therapeutics, evaluating their efficacy by measuring tumors using light sheet confocal microscopy, and conducting large-scale RNA-seq analysis to characterize therapeutic-induced changes in gene expression. The model was established to recapitulate triple-negative breast cancer (TNBC) and validated using TNBC standards of care and an investigational therapeutic agent.
RESUMO
Biobanking is an operational component of various epidemiological studies and clinical trials. Although peripheral blood is routinely acquired and stored in biobanks, the effects of specimen processing on cell composition and clinically relevant functional markers of T cells still require a systematic evaluation. In this study, we assessed 25 relevant T cell markers in human PBMCs and showed that the detection of nine membrane markers (e.g., PD-1, CTLA4, KLRG1, CD25, CD122, CD127, CCR7, and others reflecting exhaustion, senescence, and other functions) was reduced among at least one T cell subset following standard processing, although the frequency of CD4, CD8, and regulatory T cells was unaffected. Nevertheless, a 6-mo-long cryopreservation did not impair the percentages of cells expressing many other membrane and all the eight tested intracellular lineage or functional T cell markers. Our findings uncover that several clinically relevant markers are particularly affected by processing and the interpretation of those results in clinical trials and translational research should be done with caution.
Assuntos
Bancos de Espécimes Biológicos , Biomarcadores/metabolismo , Criopreservação/métodos , Leucócitos Mononucleares/metabolismo , Subpopulações de Linfócitos T/metabolismo , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/metabolismo , Criopreservação/normas , Citometria de Fluxo/métodos , Humanos , Subunidade alfa de Receptor de Interleucina-7/metabolismo , Lectinas Tipo C/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Receptores Imunológicos/metabolismo , Padrões de Referência , Subpopulações de Linfócitos T/citologia , Linfócitos T Reguladores/citologia , Linfócitos T Reguladores/metabolismo , Fatores de TempoRESUMO
Graft-versus-host disease (GVHD) is a life-threatening complication of allogeneic stem cell transplantation induced by the influx of donor-derived effector T cells (TE) into peripheral tissues. Current treatment strategies rely on targeting systemic T cells; however, the precise location and nature of instructions that program TE to become pathogenic and trigger injury are unknown. We therefore used weighted gene coexpression network analysis to construct an unbiased spatial map of TE differentiation during the evolution of GVHD and identified wide variation in effector programs in mice and humans according to location. Idiosyncrasy of effector programming in affected organs did not result from variation in T cell receptor repertoire or the selection of optimally activated TE. Instead, TE were reprogrammed by tissue-autonomous mechanisms in target organs for site-specific proinflammatory functions that were highly divergent from those primed in lymph nodes. In the skin, we combined the correlation-based network with a module-based differential expression analysis and showed that Langerhans cells provided in situ instructions for a Notch-dependent T cell gene cluster critical for triggering local injury. Thus, the principal determinant of TE pathogenicity in GVHD is the final destination, highlighting the need for target organ-specific approaches to block immunopathology while avoiding global immune suppression.
Assuntos
Reprogramação Celular/imunologia , Doença Enxerto-Hospedeiro/imunologia , Células de Langerhans/imunologia , Pele/imunologia , Linfócitos T Citotóxicos/imunologia , Animais , Antígenos CD/genética , Antígenos CD/metabolismo , Antígenos de Superfície/genética , Antígenos de Superfície/metabolismo , Transplante de Medula Óssea/efeitos adversos , Células Cultivadas , Reprogramação Celular/genética , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica/imunologia , Doença Enxerto-Hospedeiro/patologia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Humanos , Células de Langerhans/metabolismo , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Masculino , Lectinas de Ligação a Manose/genética , Lectinas de Ligação a Manose/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Família Multigênica/genética , Família Multigênica/imunologia , Cultura Primária de Células , Receptores Notch/metabolismo , Pele/citologia , Pele/patologia , Linfócitos T Citotóxicos/metabolismo , Quimeras de Transplante , Transplante Homólogo/efeitos adversosRESUMO
Lymph node stromal cells play a role in self-tolerance by presenting tissue antigens to T cells. Yet, immunomodulatory properties of lymphoid tissue stroma, particularly toward CD4+ T cells, remain insufficiently characterized by lack of tools to target antigens for presentation by stromal cells. A lentiviral vector was therefore designed for antigen delivery to MHC class II+ cells of nonhematopoietic origin. Following intravenous vector delivery, the transgene was detected in lymph node gp38+ stromal cells which were CD45- MHCII+ and partly positive for CD86 and CTLA4 or B7-H4. The transgene was not detected in classical dendritic cells of lymph nodes or spleen. Transgene-specific CD4+ and CD8+ T cell responses were primed and regulatory T cells were also induced but effector T cell response did not develop, even after a peptide boost. Antigen-specific CD8+ T cells were not cytolytic in vivo. Thus, expressing a neo-antigen in MHC-II+ lymph node stroma seems to trigger blunt CD4 T cell responses leading to antigen-specific CD8+ T cell anergy. These results open up new perspectives to further characterize lymph node stromal cell functional properties and to develop gene transfer protocols targeting lymph node stroma to induce peripheral tolerance.
Assuntos
Linfócitos T CD8-Positivos/imunologia , Técnicas de Transferência de Genes , Vetores Genéticos/administração & dosagem , Linfonodos/imunologia , Células Estromais/metabolismo , Animais , Apresentação de Antígeno , Linfócitos T CD4-Positivos/imunologia , Anergia Clonal , Feminino , Genes MHC da Classe II , Lentivirus/genética , Masculino , Camundongos , Especificidade de ÓrgãosRESUMO
Gene transfer vectors such as lentiviral vectors offer versatile possibilities to express transgenic antigens for vaccination purposes. However, viral vaccines leading to broad transduction and transgene expression in vivo, are undesirable. Therefore, strategies capable of directing gene transfer only to professional antigen-presenting cells would increase the specific activity and safety of genetic vaccines. A lentiviral vector pseudotype specific for murine major histocompatibilty complex class II (LV-MHCII) was recently developed and the present study aims to characterize the in vivo biodistribution profile and immunization potential of this vector in mice. Whereas the systemic administration of a vector pseudotyped with a ubiquitously-interacting envelope led to prominent detection of vector copies in the liver of animals, the injection of an equivalent amount of LV-MHCII resulted in a more specific biodistribution of vector and transgene. Copies of LV-MHCII were found only in secondary lymphoid organs, essentially in CD11c+ dendritic cells expressing the transgene whereas B cells were not efficiently targeted in vivo, contrary to expectations based on in vitro testing. Upon a single injection of LV-MHCII, naive mice mounted specific effector CD4 and CD8 T cell responses against the intracelllular transgene product with the generation of Th1 cytokines, development of in vivo cytotoxic activity and establishment of T cell immune memory. The targeting of dendritic cells by recombinant viral vaccines must therefore be assessed in vivo but this strategy is feasible, effective for immunization and cross-presentation and constitutes a potentially safe alternative to limit off-target gene expression in gene-based vaccination strategies with integrative vectors.
Assuntos
Células Dendríticas/imunologia , Genes MHC da Classe II , Imunidade Celular/efeitos dos fármacos , Lentivirus/genética , Vacinas Virais/imunologia , Animais , Linfócitos B/citologia , Linfócitos B/imunologia , Antígeno CD11c/genética , Antígeno CD11c/imunologia , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Citotoxicidade Imunológica , Células Dendríticas/citologia , Expressão Gênica , Vetores Genéticos , Imunização , Memória Imunológica , Injeções Intravenosas , Lentivirus/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Equilíbrio Th1-Th2 , Vacinas Sintéticas , Vacinas Virais/administração & dosagem , Vacinas Virais/biossíntese , Vacinas Virais/genéticaRESUMO
The administration of recombinant adeno-associated viral vectors (rAAV) for gene transfer induces strong humoral responses through mechanisms that remain incompletely characterized. To investigate the links between innate and adaptive immune responses to the vector, rAAVs were injected intravenously into mice deficient in cell-intrinsic components of innate responses (Toll-like receptors (TLRs), type-1 interferon (IFN) or inflammasome signaling molecules) and AAV-specific antibodies were measured. Of all molecules tested, only MyD88 was critically needed to mount immunoglobulin G (IgG) responses since MyD88(-/-) mice failed to develop high levels of AAV-specific IgG2 and IgG3, regardless of capsid serotype injected. None of the TLRs tested was essential here, but TLR9 ensured a Th1-biased antibody responses. Indeed, capsid-specific Th1 cells were induced upon injection of rAAV1, as directly confirmed with an epitope-tagged capsid, and the priming and development of these Th1 cells required T cell-extrinsic MyD88. Cell transfer experiments showed that autonomous MyD88 signaling in B cells, but not T cells, was sufficient to produce Th1-dependent IgGs. Therefore, rAAV triggers innate responses, at least via B cells, controlling the development of capsid-specific Th1-driven antibodies. MyD88 emerges as a critical and pivotal regulator of both T- and B-cell adaptive immunity against AAV.