Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(5)2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38475366

RESUMO

For the first time, composites of metal-organic framework MOF-5 and conjugated polymer polyaniline (PANI), (MOF-5/PANI), prepared using PANI in its conducting (emeraldine salt, ES) or nonconducting form (emeraldine base, EB) at various MOF-5 and PANI mass ratios, were evaluated as electrode materials for the electrochemical detection of cadmium (Cd2+) and lead (Pb2+) ions in aqueous solutions. Testing of individual components of composites, PANI-ES, PANI-EB, and MOF-5, was also performed for comparison. Materials are characterized by Raman spectroscopy, scanning electron microscopy (SEM) and dynamic light scattering (DLS), and their electrochemical behavior was discussed in terms of their zeta potential, structural, morphology, and textural properties. All examined composites showed high electrocatalytic activity for the oxidation of Cd and Pb to Cd2+ and Pb2+, respectively. The MOF/EB-1 composite (71.0 wt.% MOF-5) gave the highest oxidation currents during both individual and simultaneous detection of two heavy metal ions. Current densities recorded with MOF/EB-1 were also higher than those of its individual components, reflecting the synergistic effect where MOF-5 offers high surface area for two heavy metals adsorption and PANI offers a network for electron transfer during metals' subsequent oxidation. Limits of detection using MOF/EB-1 electrode for Cd2+ and Pb2+ sensing were found to be as low as 0.077 ppm and 0.033 ppm, respectively. Moreover, the well-defined and intense peaks of Cd oxidation to Cd2+ and somewhat lower peaks of Pb oxidation to Pb2+ were observed at voltammograms obtained for the Danube River as a real sample with no pretreatment, which implies that herein tested MOF-5/PANI electrodes could be used as electrochemical sensors for the detection of heavy metal ions in the real water samples.

2.
Polymers (Basel) ; 15(22)2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-38006074

RESUMO

The environmental application of the carbonized composites of the Zn-containing metal-organic framework MOF-5 and polyaniline (PANI) in its emeraldine salt and base forms (C-(MOF-5/PANI)) was investigated for the first time. Textural properties and particle size distributions revealed that composites are dominantly mesoporous and nanoscale in nature, while Raman spectroscopy revealed the ZnO phase beneath the carbon matrix. Adsorption of pesticide, dye, and metal cation on C-(MOF-5/PANI) composites in aqueous solutions was evaluated and compared with the behavior of the precursor components, carbonized MOF-5 (cMOF), and carbonized PANIs. A lower MOF-5 content in the precursor, a higher specific surface area, and the pore volume of the composites led to improved adsorption performance for acetamiprid (124 mg/g) and Methylene Blue (135 mg/g). The presence of O/N functional groups in composites is essential for the adsorption of nitrogen-rich pollutants through hydrogen bonding with an estimated monolayer capacity twice as high as that of cMOF. The proton exchange accompanying Cd2+ retention was associated with the Zn/Cd ion exchange, and the highest capacity (9.8 mg/g) was observed for the composite synthesized from the precursor with a high MOF-5 content. The multifunctionality of composites was evidenced in mixtures of pollutants where noticeably better performance for Cd2+ removal was found for the composite compared to cMOF. Competitive binding between three pollutants favored the adsorption of pesticide and dye, thereby hindering to some extent the ion exchange necessary for the removal of metal cations. The results emphasize the importance of the PANI form and MOF-5/PANI weight ratio in precursors for the development of surface, porosity, and active sites in C-(MOF-5/PANI) composites, thus guiding their environmental efficiency. The study also demonstrated that C-(MOF-5/PANI) composites retained studied pollutants much better than carbonized precursor PANIs and showed comparable or better adsorption ability than cMOF.

3.
Materials (Basel) ; 16(3)2023 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-36770026

RESUMO

Composites of carbons with metal oxides and metal sulfides have attracted a lot of interest as materials for energy conversion and storage applications. Herein, we report on novel N,O-doped carbon/ZnO/ZnS and N,O-doped carbon/ZnO composites (generally named C-(MOF-5/PANI)), synthesized by the carbonization of metal-organic framework MOF-5/polyaniline (PANI) composites. The produced C-(MOF-5/PANI)s are comprehensively characterized in terms of composition, molecular and crystalline structure, morphology, electrical conductivity, surface area, and electrochemical behavior. The composition and properties of C-(MOF-5/PANI) composites are dictated by the composition of MOF-5/PANI precursors and the form of PANI (conducting emeraldine salt (ES) or nonconducting emeraldine base). The ZnS phase is formed only with the PANI-ES form due to S-containing counter-ions. XRPD revealed that ZnO and ZnS existed as pure wurtzite crystalline phases. PANI and MOF-5 acted synergistically to produce C-(MOF-5/PANI)s with high SBET (up to 609 m2 g-1), electrical conductivity (up to 0.24 S cm-1), and specific capacitance, Cspec, (up to 238.2 F g-1 at 10 mV s-1). Values of Cspec commensurated with N content in C-(MOF-5/PANI) composites (1-10 wt.%) and overcame Cspec of carbonized individual components PANI and MOF-5. By acid etching treatment of C-(MOF-5/PANI), SBET and Cspec increased to 1148 m2 g-1 and 341 F g-1, respectively. The developed composites represent promising electrode materials for supercapacitors.

4.
RSC Adv ; 12(21): 13154-13167, 2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35520130

RESUMO

In a previous report on the enzymatic synthesis of the conductive emeraldine salt form of polyaniline (PANI-ES) in aqueous solution using PADPA (p-aminodiphenylamine) as monomer, horseradish peroxidase isoenzyme C (HRPC) was applied as a catalyst at pH = 4.3 with H2O2 as a terminal oxidant. In that work, anionic vesicles were added to the reaction mixture for (i) guiding the reaction to obtain poly(PADPA) products that resemble PANI-ES, and for (ii) preventing product precipitation (known as the "template effect"). In the work now presented, instead of native HRPC, only its prosthetic group ferric heme b (= hemin) was utilized as a catalyst, and micelles formed from SDBS (sodium dodecylbenzenesulfonate) served as templates. For the elaborated optimal reaction conditions, complementary UV/vis/NIR, EPR, and Raman spectroscopy measurements clearly showed that the reaction mixture obtained after completion of the reaction contained PANI-ES-like products as dominating species, very similar to the products formed with HRPC as catalyst. HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonate) was found to have a positive effect on the reaction rate as compared to dihydrogenphosphate. This work is the first on the template-assisted formation of PANI-ES type products under mild, environmentally friendly conditions using hemin as a cost-effective catalyst.

5.
Inorg Chem ; 59(23): 16789-16794, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33215914

RESUMO

We report on the first example of a peroxouranium-containing {P8W48} wheel, [{(UO2)4(O2)4}2(P8W48O184)]40- (1), which was synthesized by a one-pot reaction of UO2(NO3)2·6H2O with the 48-tungsto-8-phosphate wheel [H7P8W48O184]33- and aqueous hydrogen peroxide in a pH 6 lithium acetate solution at 50 °C. Polyanion 1 comprises two tetrauranyl squares with side-on peroxo bridging ligands in the cavity of the {P8W48} wheel, and was isolated as the hydrated potassium-lithium salt K18Li22[{(UO2)4(O2)4}2(P8W48O184)]·133H2O (KLi-1), which was characterized in the solid state by single-crystal X-ray diffraction, as well as thermogravimetric and elemental analyses. A detailed Fourier transform infrared and Raman spectroscopy study was also performed.

6.
ACS Omega ; 4(2): 2931-2947, 2019 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-31459521

RESUMO

Many previous studies have shown that (i) the oxidation of aniline or the aniline dimer p-aminodiphenylamine (PADPA) in a slightly acidic aqueous solution can be catalyzed with heme peroxidases or multicopper laccases and that (ii) subsequent reactions lead to oligomeric or polymeric products, which resemble chemically synthesized polyaniline in its conductive emeraldine salt form (PANI-ES), provided that (iii) an anionic "template" is present in the reaction medium. Good templates are anionic polyelectrolytes, micelles, or vesicles. Under optimal conditions, their presence directs the reactions in a positive way toward the desired formation of PANI-ES-type products. The effect of four different types of anionic templates on the formation of PANI-ES-like products from PADPA was investigated and compared by using Trametes versicolor laccase (TvL) as a catalyst in an aqueous pH 3.5 solution at room temperature. All four templates contain sulfonate groups: the sodium salt of the polyelectrolyte sulfonated polystyrene (SPS), micelles from sodium dodecylbenzenesulfonate (SDBS), vesicles from a 1:1 molar mixture of SDBS and decanoic acid, and vesicles from sodium bis(2-ethylhexyl)sulfosuccinate (AOT). Although with all four templates, stable, inkjet-printable solutions or suspensions consisting of PANI-ES-type products were obtained under optimized conditions, considerably higher amounts of TvL were required with SDBS micelles to achieve comparable monomer conversion to PANI-ES-like products during the same time period when compared to those with SPS or the two types of vesicles. This makes SDBS micelles less attractive as templates for the investigated reaction. In situ UV/vis/near-infrared, electron paramagnetic resonance (EPR), and Raman spectroscopy measurements in combination with an high-performance liquid chromatography analysis of extracted reaction products, which were deprotonated and chemically reduced, showed seemingly small but significant differences in the composition of the mixtures obtained when reaching reaction equilibrium after 24 h. With the two vesicle systems, the content of unwanted substituted phenazine units was lower than in the case of SPS polyelectrolyte and SDBS micelles. The EPR spectra indicate a more localized, narrower distribution of electronic states of the paramagnetic centers of the PANI-ES-type products synthesized in the presence of the two vesicle systems when compared to that of the similar products obtained with the SPS polyelectrolyte and SDBS micelles as templates. Overall, the data obtained from the different complementary methods indicate that with the two vesicle systems structurally more uniform (regular) PANI-ES-type products formed. Among the two investigated vesicle systems, for the investigated reaction (oxidation of PADPA with TvL and O2), AOT appears a somewhat better choice as it leads to a higher content of the PANI-ES polaron form.

7.
Artigo em Inglês | MEDLINE | ID: mdl-31355193

RESUMO

The polymerization of aniline to polyaniline (PANI) can be achieved chemically, electrochemically or enzymatically. In all cases, the products obtained are mixtures of molecules which are constituted by aniline units. Depending on the synthesis conditions there are variations (i) in the way the aniline molecules are connected, (ii) in the average number of aniline units per molecule, (iii) in the oxidation state, and (iv) in the degree of protonation. For many possible applications, the synthesis of electroconductive PANI with para-N-C-coupled aniline units in their half-oxidized and protonated state is of interest. This is the emeraldine salt form of PANI, abbreviated as PANI-ES. The enzymatic synthesis of PANI-ES is an environmentally friendly alternative to conventional chemical or electrochemical methods. Although many studies have been devoted to the in vitro synthesis of PANI-ES by using heme peroxidases with added hydrogen peroxide (H2O2) as the oxidant, the application of laccases is of particular interest since the oxidant for these multicopper enzymes is molecular oxygen (O2) from air, which is beneficial from environmental and economic points of view. In vivo, laccases participate in the synthesis and degradation of lignin. Various attempts of synthesizing PANI-ES with laccase/O2 in slightly acidic aqueous media from aniline or the linear aniline dimer PADPA (p-aminodiphenylamine) are summarized. Advances in the understanding of the positive effects of soft dynamic templates, as chemical structure guiding additives (anionic polyelectrolytes, micelles, or vesicles), for obtaining PANI-ES-rich products are highlighted. Conceptually, some of these template effects appear to be related to the effect "dirigent proteins" exert in the biosynthesis of lignin. In both cases intermediate radicals are formed enzymatically which then must react in a controlled way in follow-up reactions for obtaining the desired products. These follow-up reactions are controlled to some extent by the templates or specific proteins.

8.
J Colloid Interface Sci ; 551: 184-194, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31078100

RESUMO

By using methyl orange template, polypyrrole nanotubes were obtained by the oxidative polymerization of pyrrole. The nanotubes were carbonized in inert atmosphere to nitrogen-enriched carbon nanotubes. These were subsequently coated with 20 wt% of polypyrrole prepared in the absence or the presence of anionic dyes (methyl orange or Acid Blue 25). The morphology of all the samples was examined by the electron microscopies, FTIR and Raman spectroscopies. Moreover, X-ray photoelectron spectroscopy and elemental analysis were used to prove the chemical structure and the successful coating process. Electron paramagnetic resonance analysis was used to calculate the spin concentrations. Significant impact of coating method is evidenced with neat polypyrrole coating providing a two-fold capacitance increase compared to uncoated nanotubes, while coating in the presence of Acid Blue 25 decreasing it slightly. With respect to oxygen reduction reaction, coatings irreversibly transformed in the first few cycles in the presence of the products of O2 reduction, presumably hydrogen peroxide, altering the oxygen reduction mechanism. This transformation allows the tailoring of the polymeric shell, over ORR active carbonaceous core, and tuning of the catalyst selectivity and optimization of materials performance for a given application - from alkaline fuel cells to hydrogen peroxide generation.

9.
RSC Adv ; 9(57): 33080-33095, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35529127

RESUMO

Horseradish peroxidase isoenzyme C (HRPC) is often used as catalyst for the preparation of the conductive emeraldine salt form of polyaniline (PANI-ES) from aniline and hydrogen peroxide (H2O2) in the presence of anionic templates in aqueous solution. Here, a direct comparison of three types of soft templates was made, (i) the sodium salt of sulfonated polystyrene (SPS), (ii) micelles from sodium dodecylbenzenesulfonate (SDBS), and (iii) vesicles from either a 1 : 1 molar mixture of SDBS and decanoic acid or from AOT (sodium bis(2-ethylhexyl)sulfosuccinate). Based on UV/vis/NIR, EPR and Raman spectroscopy measurements all three types of templates are similarly suitable, with advantages of the two vesicle systems in terms of aniline conversion degree and radical content in the final PANI-ES product. First experiments with sulfated cellulose nanocrystals (CNCs) indicate that they are promising rigid templates for the preparation of electroconductive PANI-ES-coated cellulose materials or devices.

10.
Langmuir ; 34(31): 9153-9166, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-29989829

RESUMO

Oligoanilines with characteristic properties of the electrically conductive emeraldine salt form of polyaniline (PANI-ES) are promising molecules for various applications. A mixture of such oligoanilines can be obtained, for example, enzymatically under mild conditions from the linear aniline dimer p-aminodiphenylamine (PADPA) with hydrogen peroxide (H2O2) and low amounts of horseradish peroxidase (HRP) in an aqueous pH = 4.3 suspension of anionic vesicles formed from AOT, the sodium salt of bis(2-ethylhexyl)sulfosuccinate. However, the simultaneous formation of undesired side products containing phenazine-type units or oxygen atoms is unsatisfactory. We have found that this situation can be improved considerably by using a mixture of PADPA and aniline instead of PADPA only but otherwise nearly identical conditions. The PANI-ES-like oligoaniline products that are obtained from the PADPA and aniline mixture were not only found to have much lower contents of phenazine-type units and not contain oxygen atoms but also were shown to be more electroactive in cyclic voltammetry measurements than the PANI-ES-like products obtained from PADPA only. The AOT vesicle suspension remained stable without product precipitation during and after the entire reaction so that it could be analyzed by in situ UV/visible/near-infrared, in situ electron paramagnetic resonance, and in situ Raman spectroscopy measurements. These measurements were complemented with ex situ high-performance liquid chromatography analyses of the deprotonated and reduced products formed from mixtures of PADPA and either fully or partially deuterated aniline. On the basis of the results obtained, a reaction mechanism is proposed for explaining this improved HRP-triggered, vesicle-assisted synthesis of electroactive PANI-ES-like products. The oligomeric products obtained can be further used, without additional special workup, for example, to coat electrodes for their possible application in biosensor devices.


Assuntos
Compostos de Anilina/síntese química , Fenilenodiaminas/química , Peroxidase do Rábano Silvestre/metabolismo , Peróxido de Hidrogênio/química
11.
RSC Adv ; 8(58): 33229-33242, 2018 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-35548148

RESUMO

The Trametes versicolor laccase (TvL)-catalysed oligomerisation of the aniline dimer p-aminodiphenylamine (PADPA) was investigated in an aqueous medium of pH = 3.5, containing 80-100 nm-sized anionic vesicles formed from AOT, the sodium salt of bis(2-ethylhexyl)sulfosuccinic acid. If run under optimal conditions, the reaction yields oligomeric products which resemble the emeraldine salt form of polyaniline (PANI-ES) in its polaron state, known to be the only oxidation state of linear PANI which is electrically conductive. The vesicles serve as "templates" for obtaining products with the desired PANI-ES-like features. For this complex, heterogeneous, vesicle-assisted, and enzyme-mediated reaction, in which dissolved dioxygen also takes part as a re-oxidant for TvL, small changes in the composition of the reaction mixture can have significant effects. Initial conditions may not only affect the kinetics of the reaction, but also the outcome, i.e., the product distribution once the reaction reaches its equilibrium state. While a change in the reaction temperature from T ≈ 25 to 5 °C mainly influenced the rate of reaction, increase in enzyme concentration and the presence of millimolar concentrations of chloride ions were found to have significant undesired effects on the outcome of the reaction. Chloride ions, which may originate from the preparation of the pH = 3.5 solution, inhibit TvL, such that higher TvL concentrations are required than without chloride to yield the same product distribution for the same reaction runtime as in the absence of chloride. With TvL concentrations much higher than the elaborated value, the products obtained clearly were different and over-oxidised. Thus, a change in the activity of the enzyme was found to have influence not only on kinetics but also led to a change in the final product distribution, molecular structure and electrical properties, which was a surprising find. The complementary analytical methods which we used in this work were in situ UV/vis/NIR, EPR, and Raman spectroscopy measurements, in combination with a detailed ex situ HPLC analysis and molecular dynamics simulations. With the results obtained, we would like to recall the often neglected or ignored fact that it is important to describe and pay attention to the experimental details, since this matters for being able to perform experiments in a reproducible way.

12.
Chem Zvesti ; 71(2): 199-242, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28775395

RESUMO

The literature concerning the oxidative oligomerization and polymerization of various arylamines, e.g., aniline, substituted anilines, aminonaphthalene and its derivatives, catalyzed by oxidoreductases, such as laccases and peroxidases, in aqueous, organic, and mixed aqueous organic monophasic or biphasic media, is reviewed. An overview of template-free as well as template-assisted enzymatic syntheses of oligomers and polymers of arylamines is given. Special attention is paid to mechanistic aspects of these biocatalytic processes. Because of the nontoxicity of oxidoreductases and their high catalytic efficiency, as well as high selectivity of enzymatic oligomerizations/polymerizations under mild conditions-using mainly water as a solvent and often resulting in minimal byproduct formation-enzymatic oligomerizations and polymerizations of arylamines are environmentally friendly and significantly contribute to a "green" chemistry of conducting and redox-active oligomers and polymers. Current and potential future applications of enzymatic polymerization processes and enzymatically synthesized oligo/polyarylamines are discussed.

14.
Sci Rep ; 6: 30724, 2016 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-27561552

RESUMO

We report about the first Raman spectroscopy study of a vesicle-assisted enzyme-catalyzed oligomerization reaction. The aniline dimer N-phenyl-1,4-phenylenediamine (= p-aminodiphenylamine, PADPA) was oxidized and oligomerized with Trametes versicolor laccase and dissolved O2 in the presence of sodium bis(2-ethylhexyl)sulfosuccinate (AOT) vesicles (80-100 nm diameter) as templates. The conversion of PADPA into oligomeric products, poly(PADPA), was monitored during the reaction by in situ Raman spectroscopy. The results obtained are compared with UV/vis/NIR and EPR measurements. All three complementary methods indicate that at least some of the poly(PADPA) products, formed in the presence of AOT vesicles, resemble the conductive emeraldine salt form of polyaniline (PANI-ES). The Raman measurements also show that structural units different from those of "ordinary" PANI-ES are present too. Without vesicles PANI-ES-like products are not obtained. For the first time, the as-prepared stable poly(PADPA)-AOT vesicle suspension was used directly to coat electrodes (without product isolation) for investigating redox activities of poly(PADPA) by cyclic voltammetry (CV). CV showed that poly(PADPA) produced with vesicles is redox active not only at pH 1.1-as expected for PANI-ES-but also at pH 6.0, unlike PANI-ES and poly(PADPA) synthesized without vesicles. This extended pH range of the redox activity of poly(PADPA) is important for applications.

15.
ACS Appl Mater Interfaces ; 7(51): 28393-403, 2015 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-26652303

RESUMO

Gold-polyaniline (Au-PANI) nanocomposite was prepared using a simple interfacial polymerization method, performed in an immiscible water/toluene biphasic system using tetrachloroaurate, AuCl4(-) as an oxidant. The formation of Au nanoparticles (AuNPs) or Au-PANI nanocomposite can be controlled to a certain degree by varying the ratio of initial Au(+) and aniline concentrations. Under optimal condition (HAuCl4/aniline ratio is 1:2), green dispersion of Au-PANI nanocomposite is produced in aqueous phase, whose morphology, structure and physicochemical properties are investigated in details. The nanocomposite shows granular morphology with mostly rodlike AuNPs embedded in polymer. It was found that polyaniline in the composite is in the conducting emeraldine salt form, containing high amount of Au (28.85 wt %). Furthermore, the electrical conductivity of the nanocomposite was found to be four-fold higher than that of the polymer itself. In addition, the nanocomposite powder, isolated from the as-prepared aqueous dispersion, can later be easily redispersed in water and further used for various applications. Moreover, the obtained Au-PANI nanocomposite showed excellent electrocatalytic performance toward the electrochemical oxygen reduction reaction (ORR), with high ORR onset potential and good selectivity. This makes it a promising candidate for a new class of Pt-free ORR catalyst.

16.
J Phys Chem A ; 115(15): 3536-50, 2011 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-21434676

RESUMO

New computational insights into the mechanism of the Boyland-Sims oxidation of arylamines with peroxydisulfate (S(2)O(8)(2-)) in an alkaline aqueous solution are presented. The key role of arylnitrenium cations, in the case of primary and secondary arylamines, and arylamine dications and immonium cations, in the case of tertiary arylamines, in the formation of corresponding o-aminoaryl sulfates, as prevalent soluble products, and oligoarylamines, as prevalent insoluble products, is proposed on the basis of the AM1 and RM1 computational study of the Boyland-Sims oxidation of aniline, ring-substituted (2-methylaniline, 3-methylaniline, 4-methylaniline, 2,6-dimethylaniline, anthranilic acid, 4-aminobenzoic acid, sulfanilic acid, sulfanilamide, 4-phenylaniline, 4-bromoaniline, 3-chloroaniline, and 2-nitroaniline) and N-substituted anilines (N-methylaniline, diphenylamine, and N,N-dimethylaniline). Arylnitrenium cations and sulfate anions (SO(4)(2-)) are generated by rate-determining two-electron oxidation of primary and secondary arylamines with S(2)O(8)(2-), while arylamine dications/immonium cations and SO(4)(2-) are initially formed by two-electron oxidation of tertiary arylamines with S(2)O(8)(2-). The subsequent regioselectivity-determining reaction of arylnitrenium cations/arylamine dications/immonium cations and SO(4)(2-), within the solvent cage, is computationally found to lead to the prevalent formation of o-aminoaryl sulfates. The formation of insoluble precipitates during the Boyland-Sims oxidation of arylamines was also computationally studied.


Assuntos
Aminas/química , Compostos de Sódio/química , Sulfatos/química , Aminas/síntese química , Estrutura Molecular , Oxirredução , Estereoisomerismo
17.
Langmuir ; 25(5): 3122-31, 2009 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-19437716

RESUMO

Self-assembled conducting, paramagnetic polyaniline nanotubes have been synthesized by the oxidative polymerization of aniline with ammonium peroxydisulfate in aqueous medium in the presence of zeolite HZSM-5, without added acid. The influence of initial zeolite/aniline weight ratio on the conductivity, molecular and supramolecular structure, paramagnetic characteristics, thermal stability, and specific surface area of polyaniline/zeolite composites was studied. The conducting (approximately 10(-2) S cm(-1)), semiconducting (3 x 10(-5) S cm(-1)), and nonconducting (5 x 10(-9) S cm(-1)) composites are produced using the zeolite/aniline weight ratios 1, 5, and 10, respectively. The coexistence of polyaniline nanotubes, which have a typical outer diameter of 70-170 nm and an inner diameter of 5-50 nm, accompanied by nanorods with a diameter of 60-100 nm and polyaniline/zeolite mesoporous aggregates, distinct from the morphology of microporous zeolite HZSM-5, was proved in the conducting nanocomposite by scanning and transmission electron microscopies. FTIR spectroscopy confirmed the presence of polyaniline in the form of conducting emeraldine salt and suggested significant interaction of polyaniline with zeolite. The evolution of molecular and supramolecular structure of polyaniline in the presence of zeolite was discussed.


Assuntos
Compostos de Anilina/química , Nanocompostos/química , Nanotecnologia/métodos , Nanotubos/química , Sulfato de Amônio/química , Relação Dose-Resposta a Droga , Condutividade Elétrica , Espectroscopia de Ressonância de Spin Eletrônica , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Modelos Químicos , Oxigênio/química , Polímeros/química , Água/química , Zeolitas/química
18.
Nanotechnology ; 20(24): 245601, 2009 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-19471087

RESUMO

Conducting nitrogen-containing carbon nanotubes were synthesized by the carbonization of self-assembled polyaniline nanotubes protonated with sulfuric acid. Carbonization was carried out in a nitrogen atmosphere at a heating rate of 10 degrees C min(-1) up to a maximum temperature of 800 degrees C. The carbonized polyaniline nanotubes which have a typical outer diameter of 100-260 nm, with an inner diameter of 20-170 nm and a length extending from 0.5 to 0.8 microm, accompanied with very thin nanotubes with outer diameters of 8-14 nm, inner diameters 3.0-4.5 nm and length extending from 0.3 to 1.0 microm, were observed by scanning and transmission electron microscopies. Elemental analysis showed 9 wt% of nitrogen in the carbonized product. Conductivity of the nanotubular PANI precursor, amounting to 0.04 S cm(-1), increased to 0.7 S cm(-1) upon carbonization. Molecular structure of carbonized polyaniline nanotubes has been analyzed by FTIR and Raman spectroscopies, and their paramagnetic characteristics were compared with the starting PANI nanotubes by EPR spectroscopy.


Assuntos
Compostos de Anilina/química , Cristalização/métodos , Nanotecnologia/métodos , Nanotubos de Carbono/química , Nanotubos de Carbono/ultraestrutura , Condutividade Elétrica , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Propriedades de Superfície
19.
J Phys Chem B ; 113(20): 7116-27, 2009 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-19402689

RESUMO

Self-assembled semiconducting, paramagnetic polyaniline nanotubes have been synthesized by the oxidative polymerization of aniline with ammonium peroxydisulfate in aqueous medium in the presence of colloidal silica particles of an average diameter approximately 12 nm, without added acid. The electrical conductivity of polyaniline nanotubes/silica nanocomposites is in the range (3.3-4.0)x10(-3) S cm(-1). The presence of paramagnetic polaronic emeraldine salt form of polyaniline and phenazine units in nanocomposites was proved by FTIR, Raman, and EPR spectroscopies. The influence of the initial silica/aniline weight ratio on the morphology of polyaniline/silica nanocomposites was studied by scanning and transmission electron microscopies. Nanocomposites synthesized by using the initial weight ratio silica/aniline

20.
J Phys Chem B ; 112(23): 6976-87, 2008 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-18489148

RESUMO

The course of oxidation of 4-aminodiphenylamine with ammonium peroxydisulfate in an acidic aqueous ethanol solution as well as the properties of the oxidation products were compared with those of 2-aminodiphenylamine. Semiconducting oligomers of 4-aminodiphenylamine and nonconducting oligomers of 2-aminodiphenylamine of weight-average molecular weights 3700 and 1900, respectively, were prepared by using an oxidant to monomer molar ratio of 1.25. When this ratio was changed from 0.5 to 2.5, the highest conductivity of oxidation products of 4-aminodiphenylamine, 2.5 x 10 (-4) S cm (-1), was reached at the molar ratio [oxidant]/[monomer] = 1.5. The mechanism of the oxidative polymerization of aminodiphenylamines has been theoretically studied by the AM1 and MNDO-PM3 semiempirical quantum chemical methods combined with the MM2 molecular mechanics force-field method and conductor-like screening model of solvation. Molecular orbital calculations revealed the prevalence of N prim-C10 coupling reaction of 4-aminodiphenylamine, while N prim-C5 is the main coupling mode between 2-aminodiphenylamine units. FTIR and Raman spectroscopic studies confirm the prevalent formation of linear N prim-C10 coupled oligomers of 4-aminodiphenylamine and suggest branching and formation of phenazine structural units in the oligomers of 2-aminodiphenylamine. The results are discussed with respect to the oxidation of aniline with ammonium peroxydisulfate, leading to polyaniline, in which 4-aminodiphenylamine is the major dimer and 2-aminodiphenylamine is the most important dimeric intermediate byproduct.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA