Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 115(13): 3320-3325, 2018 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-29531049

RESUMO

Transgenic crops containing the bacterium Bacillus thuringiensis (Bt) genes reduce pests and insecticide usage, promote biocontrol services, and economically benefit growers. Area-wide Bt adoption suppresses pests regionally, with declines expanding beyond the planted Bt crops into other non-Bt crop fields. However, the offsite benefits to growers of other crops from such regional suppression remain uncertain. With data spanning 1976-2016, we demonstrate that vegetable growers benefit via decreased crop damage and insecticide applications in relation to pest suppression in the Mid-Atlantic United States. We provide evidence for the regional suppression of Ostrinia nubilalis (Hübner), European corn borer, and Helicoverpa zea (Boddie), corn earworm, populations in association with widespread Bt maize adoption (1996-2016) and decreased economic levels for injury in vegetable crops [peppers (Capsicum annuum L.), green beans (Phaseolus vulgaris L.), and sweet corn (Zea mays L., convar. saccharata)] compared with the pre-Bt period (1976-1995). Moth populations of both species significantly declined in association with widespread Bt maize (field corn) adoption, even as increased temperatures buffered the population reduction. We show marked decreases in the number of recommended insecticidal applications, insecticides applied, and O. nubilalis damage in vegetable crops in association with widespread Bt maize adoption. These offsite benefits to vegetable growers in the agricultural landscape have not been previously documented, and the positive impacts identified here expand on the reported ecological effects of Bt adoption. Our results also underscore the need to account for offsite economic benefits of pest suppression, in addition to the direct economic benefits of Bt crops.


Assuntos
Bacillus thuringiensis/genética , Produtos Agrícolas , Inseticidas/farmacologia , Mariposas/fisiologia , Controle Biológico de Vetores , Doenças das Plantas/prevenção & controle , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Zea mays/crescimento & desenvolvimento , Animais , Resistência a Inseticidas , Mariposas/classificação , Doenças das Plantas/genética , Doenças das Plantas/parasitologia , Dinâmica Populacional , Zea mays/metabolismo , Zea mays/parasitologia
2.
J Econ Entomol ; 108(3): 1065-71, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26470230

RESUMO

The brown marmorated stink bug, Halyomorpha halys (Stål), is an Asian species that now dominates the stink bug complex in many cultivated crops throughout the mid-Atlantic United States. Sweet corn (Zea mays L.) is a preferred host of H. halys, and the bug can cause kernel injury on developing ears. Currently, there is limited information available on which plant growth stages are most sensitive to H. halys feeding or density of bugs required to cause yield and quality reductions on processing and fresh market sweet corn ears. In 2011 and 2012, sweet corn ears were infested at three different corn growth stages: silking (R1), blister (R2), and milk (R3) at densities of zero, one, three, and five H. halys adults per ear for 7 d. At harvest, four yield measurements were assessed and ears were inspected for quality reductions. The greatest yield loss from H. halys occurred when infestations were initiated during early stages of ear development, and the greatest quality reductions (damaged kernels) occurred during later stages of ear development. A density of one H. halys per ear resulted in levels of kernel damage great enough to cause significant quality reductions. This study highlights the ability of H. halys to cause substantial economic losses in both fresh market and processing sweet corn in a relatively short period of time at low population densities. Therefore, infestations by this insect in sweet corn must be considered when making pest management decisions in regions where it has become established.


Assuntos
Cadeia Alimentar , Heterópteros/fisiologia , Zea mays/crescimento & desenvolvimento , Animais , Comportamento Alimentar , Heterópteros/crescimento & desenvolvimento , Ninfa/crescimento & desenvolvimento , Ninfa/fisiologia , Densidade Demográfica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA